A collection of scholarly work published by and supporting the Center for Earth Systems Engineering and Management (CESEM) at Arizona State University.

CESEM focuses on "earth systems engineering and management," providing a basis for understanding, designing, and managing the complex integrated built/human/natural systems that increasingly characterize our planet.

Works in this collection are particularly important in linking engineering, technology, and sustainability, and are increasingly intertwined with the work of ASU's Global Institute of Sustainability (GIOS).

Collaborating Institutions:
School of Sustainable Engineering and the Built Environment (SSEBE), Center for Earth Systems Engineering and Management
Displaying 1 - 3 of 3
Filtering by

Clear all filters

Description

Sonoma County, CA is on an ambitious pathway to meeting stringent carbon emissions goals that are part of California Assembly Bill 32. At the county-level, climate planners are currently evaluating options to assist residents of the county in reducing their carbon footprint and also for saving money. The Sonoma County

Sonoma County, CA is on an ambitious pathway to meeting stringent carbon emissions goals that are part of California Assembly Bill 32. At the county-level, climate planners are currently evaluating options to assist residents of the county in reducing their carbon footprint and also for saving money. The Sonoma County Energy Independence Program (SCEIP) is one such county-level measure that is currently underway. SCEIP is a revolving loan fund that eligible residents may utilize to install distributed solar energy on their property. The fund operates like a property tax assessment, except that it only remains for a period of 20 years rather than in perpetuity.

This analysis intends to estimate the potential countywide effect that the $100M SCEIP fund might achieve on the C02 and cost footprint for the residential building energy sector. A functional unit of one typical home in the county is selected for a 25 year analysis period. Outside source data for the lifecycle emissions generated by the production, installation and operations of a PV system are utilized. Recent home energy survey data for the region is also utilized to predict a “typical” system size and profile that might be funded by the SCEIP program. A marginal cost-benefit calculation is employed to determine what size solar system a typical resident might purchase, which drives the life cycle assessment of the functional unit. Next, the total number of homes that might be financed by the SCEIP bond is determined in order to forecast the potential totalized effect on the County’s lifecycle emissions and cost profile.

The final results are evaluated and it is determined that the analysis is likely conservative in its estimation of the effects of the SCEIP program. This is due to the fact that currently offered subsidies are not utilized in the marginal benefit calculation for the solar system but do exist, the efficiency of solar technology is increasing, and the cost of a system over its lifecycle is currently decreasing. The final results show that financing distributed solar energy systems using Sonoma County money is a viable option for helping to meet state mandated goals and should be further pursued.

Created2012-05
Description

Vehicle trips presently account for approximately 50% of San Francisco’s greenhouse gas emissions (San Francisco County Transportation Authority, 2008). City and county officials have developed aggressive strategies for the future of passenger transportation in the metropolitan area, and are determined to move away from a “business as usual” future. This

Vehicle trips presently account for approximately 50% of San Francisco’s greenhouse gas emissions (San Francisco County Transportation Authority, 2008). City and county officials have developed aggressive strategies for the future of passenger transportation in the metropolitan area, and are determined to move away from a “business as usual” future. This project starts with current-state source data from a life-cycle comparison of urban transportation systems (Chester, Horvath, & Madanat, 2010), and carries the inventoried emissions and energy usage through by way of published future scenarios for San Francisco.

From the extrapolated calculations of future emissions/energy, the implied mix of transportation modes can be backed out of the numbers. Five scenarios are evaluated, from “business as usual” through very ambitious “healthy environment” goals. The results show that when planners and policymakers craft specific goals or strategies for a location or government, those targets, even if met, are unlikely to result in the intended physical outcomes. City and state governments would be wise to support broad strategy goals (like 20% GHG reduction) with prioritized specifics that can inform real projects leading to the goals (for instance, add 5 miles of bike path per year through 2020, or remove 5 parking garages and replace them with transit depots). While these results should not be used as predictions or forecasts, they can inform the crafters of future transportation policy as an opportunity for improvement or a cautionary tale.

Created2012-05
Description

The current study conducts a comparative LCA of two alternative structural retrofit/ strengthening techniques - steel jacketing, and the carbon fiber reinforced polymer (CFRP) retrofit. A cradle-to-gate system boundary is used for both techniques. The results indicated that the CFRP retrofit technique has merits over the conventional steel jacketing in

The current study conducts a comparative LCA of two alternative structural retrofit/ strengthening techniques - steel jacketing, and the carbon fiber reinforced polymer (CFRP) retrofit. A cradle-to-gate system boundary is used for both techniques. The results indicated that the CFRP retrofit technique has merits over the conventional steel jacketing in all three impact categories covered by this study. This is primarily attribute to the much less material consumption for CFRP retrofit as compared to steel jacketing for achieving the same load carrying capability of the retrofitted bridge structures. Even though the transoceanic transportation of carbon fiber has been taken into account in this study, the energy consumption and environmental impacts of CFRP transportation is still much smaller than steel due to it light weight property. The impacts of CFRP retrofit are mainly focused in the material manufacturing phase, which implies that the improvements in the carbon fiber manufacturing technology could potentially further reduce the environmental impacts of CFRP retrofit.

Created2013-05