A collection of scholarly work published by and supporting the Center for Earth Systems Engineering and Management (CESEM) at Arizona State University.

CESEM focuses on "earth systems engineering and management," providing a basis for understanding, designing, and managing the complex integrated built/human/natural systems that increasingly characterize our planet.

Works in this collection are particularly important in linking engineering, technology, and sustainability, and are increasingly intertwined with the work of ASU's Global Institute of Sustainability (GIOS).

Collaborating Institutions:
School of Sustainable Engineering and the Built Environment (SSEBE), Center for Earth Systems Engineering and Management
Displaying 1 - 4 of 4
Filtering by

Clear all filters

Description

In the construction industry, the management of knowledge is becoming an increasingly important element for success. The successful management of knowledge helps general contractors to better compete which ultimately leads to more contracts and potentially greater prots. The Life Cycle Costing assessment presented here is a small step in understanding the complex

In the construction industry, the management of knowledge is becoming an increasingly important element for success. The successful management of knowledge helps general contractors to better compete which ultimately leads to more contracts and potentially greater prots. The Life Cycle Costing assessment presented here is a small step in understanding the complex decision of investing in BIM from general contractor's perspective. This assessment has identified the cost components for BIM and has allocated the cost for a typical project.

Created2013-05
Description

There is no ’typical’ production process for Legally Autonomous Adults (LAD). However, some very general inputs and flows can be assumed: Physical, mental, emotional, and social or cultural inputs are provided by primary caregivers throughout the process. LADs in Arizona in the 21st century are produced in small batches. Inputs

There is no ’typical’ production process for Legally Autonomous Adults (LAD). However, some very general inputs and flows can be assumed: Physical, mental, emotional, and social or cultural inputs are provided by primary caregivers throughout the process. LADs in Arizona in the 21st century are produced in small batches. Inputs tend to be provided by consistent sources according to unique values, and the production process does not actually stop cold at the factory gate, but continues on into the next phase.

Sometimes, due to externalities like substance dependence or domestic violence, the original production process either deprives the product of essential inputs or adds toxic inputs, causing damage. The damage can carry forward into the next phases, or even be so severe that the production process is terminated. When there is a risk of such damage, then the product – the child – is removed from his original production system, taken into the custody of a state-run institution (Child Protective Services), and placed in foster care.

LADs who have experienced a foster care intervention as part of their production process are less likely to have that obligatory property of Legal Autonomy, and more likely to have obligatory properties that are detrimental to society at large. Omitting other variables, they have higher rates of incarceration, homelessness, and substance abuse than LADs who have not been in out-of-home foster care. The financial and societal costs of those dependencies are imposed on the same stakeholders whose efforts and contributions make the foster care system possible.

CPS removal triggers a system expansion that expends energy and resources in an attempt to compensate for the missing inputs and to mitigate the toxic inputs, if any, that the child’s family was adding. In a material production system, it seems illogical to construct a complex system expansion which predictably results in products lacking their most important obligatory property. That contradiction was the impetus for this paper.

The goal of this life cycle analysis is to visualize that system expansion. Then, the project seeks to quantify and compare the difference between this system expansion and the generalized original process, in units of dollars per LAD. Finally, the project assesses the statistical impacts of the system expansion on LADs, and describes further impacts of these LADs on society at large.

Created2013-05
Description

An inter-temporal life cycle cost and greenhouse gas emissions assessment of the Los Angeles roadway network is developed to identify how construction decisions lead to embedded impacts and create an emergent behavior (vehicle miles traveled by users) in the long run.

A video of the growth of the network and additional

An inter-temporal life cycle cost and greenhouse gas emissions assessment of the Los Angeles roadway network is developed to identify how construction decisions lead to embedded impacts and create an emergent behavior (vehicle miles traveled by users) in the long run.

A video of the growth of the network and additional information are available here.

Created2013-04
Description

Results are available here

The environmental life cycle assessment of electric rail public transit modes requires an assessment of electricity generation mixes. The provision of electricity to a region does not usually adhere to geopolitical boundaries. Electricity is governed based on lowest cost marginal dispatch and reliability principles. Additionally, there

Results are available here

The environmental life cycle assessment of electric rail public transit modes requires an assessment of electricity generation mixes. The provision of electricity to a region does not usually adhere to geopolitical boundaries. Electricity is governed based on lowest cost marginal dispatch and reliability principles. Additionally, there are times when a public transit agency may purchase wholesale electricity from a particular service provider. Such is the case with electric rail modes in the San Francisco Bay Area.

An environmental life cycle assessment of San Francisco Bay Area public transit systems was developed by Chester and Horvath (2009) and includes vehicle manufacturing/maintenance, infrastructure construction/operation/maintenance, energy production, and supply chains, in addition to vehicle propulsion. For electric rail modes, vehicle propulsion was based on an average electricity mix for the region. Since 2009, new electricity contract information and renewable electricity goals have been established. As such, updated life cycle results should be produced.

Using recent wholesale electricity mix and renewable electricity goal data from the transit agencies, updated electricity precombustion, generation, transmission, and distribution environmental impacts of vehicle propulsion are estimated. In summary, SFMTA Muni light rail is currently purchasing 100% hydro electricity from the Hetch Hetchy region of California and the Bay Area Rapid Transit (BART) system is purchasing 22% natural gas, 9% coal, 2% nuclear, 66% hydro, and 1% other renewables from the Pacific Northwest . Furthermore, the BART system has set a goal of 20% renewables by 2016. Using the GREET1 2012 electricity pathway, a life cycle assessment of wholesale and renewable electricity generation for these systems is calculated.

Chester and Horvath (2009)