A collection of scholarly work published by and supporting the Center for Earth Systems Engineering and Management (CESEM) at Arizona State University.

CESEM focuses on "earth systems engineering and management," providing a basis for understanding, designing, and managing the complex integrated built/human/natural systems that increasingly characterize our planet.

Works in this collection are particularly important in linking engineering, technology, and sustainability, and are increasingly intertwined with the work of ASU's Global Institute of Sustainability (GIOS).

Collaborating Institutions:
School of Sustainable Engineering and the Built Environment (SSEBE), Center for Earth Systems Engineering and Management
Displaying 1 - 2 of 2
Filtering by

Clear all filters

Description

In an effort to provide drinking water treatment options that are simple to operate, two hybrid resins have been developed that can treat multiple pollutants in a single step. A parent weak base anion exchange resin is embedded with nanoparticles made of either iron hydroxide or titanium dioxide (Fe-WBAX and

In an effort to provide drinking water treatment options that are simple to operate, two hybrid resins have been developed that can treat multiple pollutants in a single step. A parent weak base anion exchange resin is embedded with nanoparticles made of either iron hydroxide or titanium dioxide (Fe-WBAX and Ti-WBAX, respectively). These provide targeted treatment for both arsenic and hexavalent chromium, common groundwater pollutants of recent regulatory significance. The project goal is to evaluate the environmentally preferable choice between Fe-WBAX and Ti-WBAX resin for simultaneous treatment of arsenic and hexavalent chromium in drinking water. The secondary goal is to identify where in the product life cycle is the most opportunity to reduce the environmental impact of the use of either product.

Created2014-06-13
Description

This study aims to quantify the environmental impacts of a hospital’s daily BMW disposal in the Phoenix, Arizona area. The sole option to dispose of BMW in Arizona is to sterilize the waste by sending it through an autoclave, and then dispose the sterilized waste in a landfill. This study

This study aims to quantify the environmental impacts of a hospital’s daily BMW disposal in the Phoenix, Arizona area. The sole option to dispose of BMW in Arizona is to sterilize the waste by sending it through an autoclave, and then dispose the sterilized waste in a landfill. This study used a Phoenix area hospital to create a start point for the waste and a general estimation of how much BMW the hospital disposes of. The system boundary for the LCA includes BMW generated at the Phoenix-area Hospital as it is travels to Stericycle, where it is autoclaved, and then transported to a landfill for disposal. The results of this retrospective, end-of-life LCA using this boundary enables hospital employees and policy makers to understand the environmental impact of placing items in the biohazardous waste bin.

Created2014-06-13