A collection of scholarly work published by and supporting the Center for Earth Systems Engineering and Management (CESEM) at Arizona State University.

CESEM focuses on "earth systems engineering and management," providing a basis for understanding, designing, and managing the complex integrated built/human/natural systems that increasingly characterize our planet.

Works in this collection are particularly important in linking engineering, technology, and sustainability, and are increasingly intertwined with the work of ASU's Global Institute of Sustainability (GIOS).

Collaborating Institutions:
School of Sustainable Engineering and the Built Environment (SSEBE), Center for Earth Systems Engineering and Management
Displaying 1 - 3 of 3
Filtering by

Clear all filters

142-Thumbnail Image.png
Description

Study Background: Researchers at ASU have determined that significant energy and environmental benefits are possible in the Phoenix metro area over the next 60 years from transit-oriented development along the current Valley Metro light rail line. The team evaluated infill densification outcomes when vacant lots and some dedicated surface parking

Study Background: Researchers at ASU have determined that significant energy and environmental benefits are possible in the Phoenix metro area over the next 60 years from transit-oriented development along the current Valley Metro light rail line. The team evaluated infill densification outcomes when vacant lots and some dedicated surface parking lots are repurposed for residential development. Life cycle building (construction, use, and energy production) and transportation (manufacturing, operation, and energy production) changes were included and energy use and greenhouse gas emissions were evaluated in addition to the potential for respiratory impacts and smog formation. All light rail infill scenarios are compared against new single family home construction in outlying areas.

Overview of Results: In the most conservative scenario, the Phoenix area can place 2,200 homes near light rail and achieve 9-15% reductions in energy use and emissions. By allowing multi-family apartments to fill vacant lots, 12,000 new dwelling units can be infilled achieving a 28-42% reduction. When surface lots are developed in addition to vacant lots then multi-family apartment buildings around light rail can deliver 30-46% energy and environmental reductions. These reductions occur even after new trains are put into operation to meet the increased demand.

Created2013
Description

Here I plan to use CLCA to evaluate the environmental impact (and economy by using MFA??) by changing traditional crop to AVP1 GM crop. In this study I will compare wild type (WT) and AVP1 transgenic romaine lettuce (Lactuca sativa cv. conquistador). This is a study of P fertilizer being

Here I plan to use CLCA to evaluate the environmental impact (and economy by using MFA??) by changing traditional crop to AVP1 GM crop. In this study I will compare wild type (WT) and AVP1 transgenic romaine lettuce (Lactuca sativa cv. conquistador). This is a study of P fertilizer being applied on romaine lettuce from gate to grave and making a comparison between WT and AVP1 romaine lettuce. The system boundary would be commercial P fertilizers applied on all lettuce in the U.S. The lettuce includes head lettuce, leaf lettuce, and romaine lettuce. The amount of P fertilizers such as inorganic, organic, and imported, will be identified and quantified. The amount of nitrogen and potassium fertilizers will also be quantified along with P fertilizer. The amount of water will be compared between the two different lettuces as the AVP1 lettuce grows faster and the amount of days of watering would be fewer. Eutrophication will be assessed as well as N2O emission. As AVP1 lettuce has a bigger root system, I will try to quantify the extra amount of CO2 fixed into the soil via AVP1 lettuce. I will also try to project the impact of AVP1 lettuce on market price. The functional unit of LCA portion is kg usage of N and P2O5 per ton of lettuce and the functional unit of MFA is kg/ha.

Created2014-06-13
Description

This report is the consolidated work of an interdisciplinary course project in CEE494/598, CON598, and SOS598, Urban Infrastructure Anatomy and Sustainable Development. In Fall 2012, the course at Arizona State University used sustainability research frameworks and life-cycle assessment methods to evaluate the comprehensive benefits and costs when transit-oriented development is

This report is the consolidated work of an interdisciplinary course project in CEE494/598, CON598, and SOS598, Urban Infrastructure Anatomy and Sustainable Development. In Fall 2012, the course at Arizona State University used sustainability research frameworks and life-cycle assessment methods to evaluate the comprehensive benefits and costs when transit-oriented development is infilled along the proposed light rail transit line expansion. In each case, and in every variation of possible future scenarios, there were distinct life-cycle benefits from both developing in more dense urban structures and reducing automobile travel in the process.

Results from the report are superseded by our publication in Environmental Science and Technology.

Created2012-12