A collection of scholarly work published by and supporting the Center for Earth Systems Engineering and Management (CESEM) at Arizona State University.

CESEM focuses on "earth systems engineering and management," providing a basis for understanding, designing, and managing the complex integrated built/human/natural systems that increasingly characterize our planet.

Works in this collection are particularly important in linking engineering, technology, and sustainability, and are increasingly intertwined with the work of ASU's Global Institute of Sustainability (GIOS).

Collaborating Institutions:
School of Sustainable Engineering and the Built Environment (SSEBE), Center for Earth Systems Engineering and Management
Displaying 1 - 2 of 2
Filtering by

Clear all filters

Description

Here I plan to use CLCA to evaluate the environmental impact (and economy by using MFA??) by changing traditional crop to AVP1 GM crop. In this study I will compare wild type (WT) and AVP1 transgenic romaine lettuce (Lactuca sativa cv. conquistador). This is a study of P fertilizer being

Here I plan to use CLCA to evaluate the environmental impact (and economy by using MFA??) by changing traditional crop to AVP1 GM crop. In this study I will compare wild type (WT) and AVP1 transgenic romaine lettuce (Lactuca sativa cv. conquistador). This is a study of P fertilizer being applied on romaine lettuce from gate to grave and making a comparison between WT and AVP1 romaine lettuce. The system boundary would be commercial P fertilizers applied on all lettuce in the U.S. The lettuce includes head lettuce, leaf lettuce, and romaine lettuce. The amount of P fertilizers such as inorganic, organic, and imported, will be identified and quantified. The amount of nitrogen and potassium fertilizers will also be quantified along with P fertilizer. The amount of water will be compared between the two different lettuces as the AVP1 lettuce grows faster and the amount of days of watering would be fewer. Eutrophication will be assessed as well as N2O emission. As AVP1 lettuce has a bigger root system, I will try to quantify the extra amount of CO2 fixed into the soil via AVP1 lettuce. I will also try to project the impact of AVP1 lettuce on market price. The functional unit of LCA portion is kg usage of N and P2O5 per ton of lettuce and the functional unit of MFA is kg/ha.

Created2014-06-13
Description

The current study conducts a comparative LCA of two alternative structural retrofit/ strengthening techniques - steel jacketing, and the carbon fiber reinforced polymer (CFRP) retrofit. A cradle-to-gate system boundary is used for both techniques. The results indicated that the CFRP retrofit technique has merits over the conventional steel jacketing in

The current study conducts a comparative LCA of two alternative structural retrofit/ strengthening techniques - steel jacketing, and the carbon fiber reinforced polymer (CFRP) retrofit. A cradle-to-gate system boundary is used for both techniques. The results indicated that the CFRP retrofit technique has merits over the conventional steel jacketing in all three impact categories covered by this study. This is primarily attribute to the much less material consumption for CFRP retrofit as compared to steel jacketing for achieving the same load carrying capability of the retrofitted bridge structures. Even though the transoceanic transportation of carbon fiber has been taken into account in this study, the energy consumption and environmental impacts of CFRP transportation is still much smaller than steel due to it light weight property. The impacts of CFRP retrofit are mainly focused in the material manufacturing phase, which implies that the improvements in the carbon fiber manufacturing technology could potentially further reduce the environmental impacts of CFRP retrofit.

Created2013-05