A collection of scholarly work published by and supporting the Center for Earth Systems Engineering and Management (CESEM) at Arizona State University.

CESEM focuses on "earth systems engineering and management," providing a basis for understanding, designing, and managing the complex integrated built/human/natural systems that increasingly characterize our planet.

Works in this collection are particularly important in linking engineering, technology, and sustainability, and are increasingly intertwined with the work of ASU's Global Institute of Sustainability (GIOS).

Collaborating Institutions:
School of Sustainable Engineering and the Built Environment (SSEBE), Center for Earth Systems Engineering and Management
Displaying 1 - 2 of 2
Filtering by

Clear all filters

Description

Most would agree that telecommunications systems are socially constructed. Since communication tends to involve people, it seems obvious that people should impact the creation of such systems. But it is far less obvious that the specifications for such systems should be noted for their social construction. As marvelous and technical as

Most would agree that telecommunications systems are socially constructed. Since communication tends to involve people, it seems obvious that people should impact the creation of such systems. But it is far less obvious that the specifications for such systems should be noted for their social construction. As marvelous and technical as the system is, we must not forget the important technological artifact known as the specification that came before it. This paper tells the story of the social construction of the IRIDIUM system specification as viewed through the eyes of a popular socio-technical systems (STS) analysis tool. Actor-Network Theory (ANT) is employed to elucidate the culture of the Motorola requirements engineering process while describing some of the primary actors and their lively interactions as they strove diligently to produce the “perfect” specification. Throughout, it will become obvious that just as the kingdom was lost “for want of a nail,” so the IRIDIUM system specification was nearly lost for want of a toolsmith.

Description

In an effort to provide drinking water treatment options that are simple to operate, two hybrid resins have been developed that can treat multiple pollutants in a single step. A parent weak base anion exchange resin is embedded with nanoparticles made of either iron hydroxide or titanium dioxide (Fe-WBAX and

In an effort to provide drinking water treatment options that are simple to operate, two hybrid resins have been developed that can treat multiple pollutants in a single step. A parent weak base anion exchange resin is embedded with nanoparticles made of either iron hydroxide or titanium dioxide (Fe-WBAX and Ti-WBAX, respectively). These provide targeted treatment for both arsenic and hexavalent chromium, common groundwater pollutants of recent regulatory significance. The project goal is to evaluate the environmentally preferable choice between Fe-WBAX and Ti-WBAX resin for simultaneous treatment of arsenic and hexavalent chromium in drinking water. The secondary goal is to identify where in the product life cycle is the most opportunity to reduce the environmental impact of the use of either product.

Created2014-06-13