A collection of scholarly work published by and supporting the Center for Earth Systems Engineering and Management (CESEM) at Arizona State University.

CESEM focuses on "earth systems engineering and management," providing a basis for understanding, designing, and managing the complex integrated built/human/natural systems that increasingly characterize our planet.

Works in this collection are particularly important in linking engineering, technology, and sustainability, and are increasingly intertwined with the work of ASU's Global Institute of Sustainability (GIOS).

Collaborating Institutions:
School of Sustainable Engineering and the Built Environment (SSEBE), Center for Earth Systems Engineering and Management
Displaying 1 - 2 of 2
Filtering by

Clear all filters

Description

Earth Systems Engineering and Management (ESEM) is a framework for both discussing and addressing the adaptive management of complex socio-ecological systems (SES). Governance of emerging technologies is an SES challenge that demonstrates all the classic symptoms of a wicked problem. This paper surveys governance literature in light of the ESEM

Earth Systems Engineering and Management (ESEM) is a framework for both discussing and addressing the adaptive management of complex socio-ecological systems (SES). Governance of emerging technologies is an SES challenge that demonstrates all the classic symptoms of a wicked problem. This paper surveys governance literature in light of the ESEM principles and explores the potential for using the principles of ESEM as a mechanism for governance, addressing particularly ESEM’s overlap with the recently promulgated anticipatory governance as defined by its three pillars of foresight, engagement, and integration. This paper demonstrates that the intersection of these concepts is significant and concludes that ESEM is a worthy framework for governance.

104-Thumbnail Image.png
Description

Recent climatic trends show more flooding and extreme heat events and in the future transportation infrastructure may be susceptible to more frequent and intense environmental perturbations. Our transportation systems have largely been designed to withstand historical weather events, for example, floods that occur at an intensity that is experienced once every

Recent climatic trends show more flooding and extreme heat events and in the future transportation infrastructure may be susceptible to more frequent and intense environmental perturbations. Our transportation systems have largely been designed to withstand historical weather events, for example, floods that occur at an intensity that is experienced once every 100 years, and there is evidence that these events are expected become more frequent. There are increasing efforts to better understand the impacts of climate change on transportation infrastructure. An abundance of new research is emerging to study various aspects of climate change on transportation systems. Much of this research is focused on roadway networks and reliable automobile travel. We explore how flooding and extreme heat might impact passenger rail systems in the Northeast and Southwest U.S.