A collection of scholarly work published by and supporting the Center for Earth Systems Engineering and Management (CESEM) at Arizona State University.

CESEM focuses on "earth systems engineering and management," providing a basis for understanding, designing, and managing the complex integrated built/human/natural systems that increasingly characterize our planet.

Works in this collection are particularly important in linking engineering, technology, and sustainability, and are increasingly intertwined with the work of ASU's Global Institute of Sustainability (GIOS).

Collaborating Institutions:
School of Sustainable Engineering and the Built Environment (SSEBE), Center for Earth Systems Engineering and Management
Displaying 1 - 2 of 2
Filtering by

Clear all filters

Description

Essay scoring is a difficult and contentious business. The problem is exacerbated when there are no “right” answers for the essay prompts. This research developed a simple toolset for essay analysis by integrating a freely available Latent Dirichlet Allocation (LDA) implementation into a homegrown assessment assistant. The complexity of the

Essay scoring is a difficult and contentious business. The problem is exacerbated when there are no “right” answers for the essay prompts. This research developed a simple toolset for essay analysis by integrating a freely available Latent Dirichlet Allocation (LDA) implementation into a homegrown assessment assistant. The complexity of the essay assessment problem is demonstrated and illustrated with a representative collection of open-ended essays. This research also explores the use of “expert vectors” or “keyword essays” for maximizing the utility of LDA with small corpora. While, by itself, LDA appears insufficient for adequately scoring essays, it is quite capable of classifying responses to open-ended essay prompts and providing insight into the responses. This research also reports some trends that might be useful in scoring essays once more data is available. Some observations are made about these insights and a discussion of the use of LDA in qualitative assessment results in proposals that may assist other researchers in developing more complete essay assessment software.

102-Thumbnail Image.png
Description

The leading source of weather-related deaths in the United States is heat, and future projections show that the frequency, duration, and intensity of heat events will increase in the Southwest. Presently, there is a dearth of knowledge about how infrastructure may perform during heat waves or could contribute to social

The leading source of weather-related deaths in the United States is heat, and future projections show that the frequency, duration, and intensity of heat events will increase in the Southwest. Presently, there is a dearth of knowledge about how infrastructure may perform during heat waves or could contribute to social vulnerability. To understand how buildings perform in heat and potentially stress people, indoor air temperature changes when air conditioning is inaccessible are modeled for building archetypes in Los Angeles, California, and Phoenix, Arizona, when air conditioning is inaccessible is estimated.

An energy simulation model is used to estimate how quickly indoor air temperature changes when building archetypes are exposed to extreme heat. Building age and geometry (which together determine the building envelope material composition) are found to be the strongest indicators of thermal envelope performance. Older neighborhoods in Los Angeles and Phoenix (often more centrally located in the metropolitan areas) are found to contain the buildings whose interiors warm the fastest, raising particular concern because these regions are also forecast to experience temperature increases. To combat infrastructure vulnerability and provide heat refuge for residents, incentives should be adopted to strategically retrofit buildings where both socially vulnerable populations reside and increasing temperatures are forecast.

Created2015