A collection of scholarly work published by and supporting the Center for Earth Systems Engineering and Management (CESEM) at Arizona State University.

CESEM focuses on "earth systems engineering and management," providing a basis for understanding, designing, and managing the complex integrated built/human/natural systems that increasingly characterize our planet.

Works in this collection are particularly important in linking engineering, technology, and sustainability, and are increasingly intertwined with the work of ASU's Global Institute of Sustainability (GIOS).

Collaborating Institutions:
School of Sustainable Engineering and the Built Environment (SSEBE), Center for Earth Systems Engineering and Management
Displaying 1 - 2 of 2
Filtering by

Clear all filters

Description

This paper’s intent is to explore the environmental gap analysis tool, Life Cycle Assessment (LCA), as it pertains to the decision-making process.

As LCA is more frequently utilized as a measurement of environmental impact, it is prudent
to understand the historical and potential impact that LCA has had or can have on

This paper’s intent is to explore the environmental gap analysis tool, Life Cycle Assessment (LCA), as it pertains to the decision-making process.

As LCA is more frequently utilized as a measurement of environmental impact, it is prudent
to understand the historical and potential impact that LCA has had or can have on its inclusion in public policy domain - specifically as it intersects the anticipatory governance framework and the supporting decision-making precautionary principle framework. For that purpose, LCA will be examined in partnership with the Precautionary Principle in order to establish practical
application.

LCA and Precautionary Principle have been used together in multiple functions. In two
case studies, the California Green Chemistry Initiative and in Nanotechnology uncertainty, there is a notion that these practices can create value for one another when addressing complex issues.

The recommendations presented in this paper are ones that recognize the current
dynamics of the LCA field along with the different sectors of decision makers. For effective
catalytic initiatives, adoptions of these recommendations are best initially leveraged by
government entities to lead by example. The proposed recommendations are summarized into
the following categories and explored in further detail later in the paper:
       1. Improvement in data sharing capabilities for LCA purposes.
       2. Common consensus on standards and technical aspects of LCA structure.
       3. Increased investment of resource allocation for LCA use and development.

Created2013-05
Description

Public transit necessitates environmental exposure and there is increasing recognition that in a future with hotter temperatures new strategies are needed to protect passengers. Arizona State University’s Spring 2017 Urban Infrastructure Anatomy course assessed travel behavior, public transit stop design, and heat exposure to develop recommendations for mitigating heat exposure.

Public transit necessitates environmental exposure and there is increasing recognition that in a future with hotter temperatures new strategies are needed to protect passengers. Arizona State University’s Spring 2017 Urban Infrastructure Anatomy course assessed travel behavior, public transit stop design, and heat exposure to develop recommendations for mitigating heat exposure. Travel surveys, analysis of infrastructure characteristics, and thermal imaging were used to assess exposure. A suite of mitigation strategies was developed from a literature review, conversations with experts, and review of other transit systems. Focusing on neighborhoods in Tempe, Arizona, strategies are developed for protecting future riders from negative health outcomes.