A collection of scholarly work published by and supporting the Center for Earth Systems Engineering and Management (CESEM) at Arizona State University.

CESEM focuses on "earth systems engineering and management," providing a basis for understanding, designing, and managing the complex integrated built/human/natural systems that increasingly characterize our planet.

Works in this collection are particularly important in linking engineering, technology, and sustainability, and are increasingly intertwined with the work of ASU's Global Institute of Sustainability (GIOS).

Collaborating Institutions:
School of Sustainable Engineering and the Built Environment (SSEBE), Center for Earth Systems Engineering and Management
Displaying 1 - 2 of 2
Filtering by

Clear all filters

Description

In an effort to provide drinking water treatment options that are simple to operate, two hybrid resins have been developed that can treat multiple pollutants in a single step. A parent weak base anion exchange resin is embedded with nanoparticles made of either iron hydroxide or titanium dioxide (Fe-WBAX and

In an effort to provide drinking water treatment options that are simple to operate, two hybrid resins have been developed that can treat multiple pollutants in a single step. A parent weak base anion exchange resin is embedded with nanoparticles made of either iron hydroxide or titanium dioxide (Fe-WBAX and Ti-WBAX, respectively). These provide targeted treatment for both arsenic and hexavalent chromium, common groundwater pollutants of recent regulatory significance. The project goal is to evaluate the environmentally preferable choice between Fe-WBAX and Ti-WBAX resin for simultaneous treatment of arsenic and hexavalent chromium in drinking water. The secondary goal is to identify where in the product life cycle is the most opportunity to reduce the environmental impact of the use of either product.

Created2014-06-13
Description

Public transit necessitates environmental exposure and there is increasing recognition that in a future with hotter temperatures new strategies are needed to protect passengers. Arizona State University’s Spring 2017 Urban Infrastructure Anatomy course assessed travel behavior, public transit stop design, and heat exposure to develop recommendations for mitigating heat exposure.

Public transit necessitates environmental exposure and there is increasing recognition that in a future with hotter temperatures new strategies are needed to protect passengers. Arizona State University’s Spring 2017 Urban Infrastructure Anatomy course assessed travel behavior, public transit stop design, and heat exposure to develop recommendations for mitigating heat exposure. Travel surveys, analysis of infrastructure characteristics, and thermal imaging were used to assess exposure. A suite of mitigation strategies was developed from a literature review, conversations with experts, and review of other transit systems. Focusing on neighborhoods in Tempe, Arizona, strategies are developed for protecting future riders from negative health outcomes.