A collection of scholarly work published by and supporting the Center for Earth Systems Engineering and Management (CESEM) at Arizona State University.

CESEM focuses on "earth systems engineering and management," providing a basis for understanding, designing, and managing the complex integrated built/human/natural systems that increasingly characterize our planet.

Works in this collection are particularly important in linking engineering, technology, and sustainability, and are increasingly intertwined with the work of ASU's Global Institute of Sustainability (GIOS).

Collaborating Institutions:
School of Sustainable Engineering and the Built Environment (SSEBE), Center for Earth Systems Engineering and Management
Displaying 1 - 5 of 5
Filtering by

Clear all filters

Description

Public transportation systems are often part of strategies to reduce urban environmental impacts from passenger transportation, yet comprehensive energy and environmental life-cycle measures, including upfront infrastructure effects and indirect and supply chain processes, are rarely considered. Using the new bus rapid transit and light rail lines in Los Angeles, near-term

Public transportation systems are often part of strategies to reduce urban environmental impacts from passenger transportation, yet comprehensive energy and environmental life-cycle measures, including upfront infrastructure effects and indirect and supply chain processes, are rarely considered. Using the new bus rapid transit and light rail lines in Los Angeles, near-term and long-term life-cycle impact assessments are developed, including consideration of reduced automobile travel. Energy consumption and emissions of greenhouse gases and criteria pollutants are assessed, as well the potential for smog and respiratory impacts.

Results show that life-cycle infrastructure, vehicle, and energy production components significantly increase the footprint of each mode (by 48–100% for energy and greenhouse gases, and up to 6200% for environmental impacts), and emerging technologies and renewable electricity standards will significantly reduce impacts. Life-cycle results are identified as either local (in Los Angeles) or remote, and show how the decision to build and operate a transit system in a city produces environmental impacts far outside of geopolitical boundaries. Ensuring shifts of between 20–30% of transit riders from automobiles will result in passenger transportation greenhouse gas reductions for the city, and the larger the shift, the quicker the payback, which should be considered for time-specific environmental goals.

Description

Vehicle trips presently account for approximately 50% of San Francisco’s greenhouse gas emissions (San Francisco County Transportation Authority, 2008). City and county officials have developed aggressive strategies for the future of passenger transportation in the metropolitan area, and are determined to move away from a “business as usual” future. This

Vehicle trips presently account for approximately 50% of San Francisco’s greenhouse gas emissions (San Francisco County Transportation Authority, 2008). City and county officials have developed aggressive strategies for the future of passenger transportation in the metropolitan area, and are determined to move away from a “business as usual” future. This project starts with current-state source data from a life-cycle comparison of urban transportation systems (Chester, Horvath, & Madanat, 2010), and carries the inventoried emissions and energy usage through by way of published future scenarios for San Francisco.

From the extrapolated calculations of future emissions/energy, the implied mix of transportation modes can be backed out of the numbers. Five scenarios are evaluated, from “business as usual” through very ambitious “healthy environment” goals. The results show that when planners and policymakers craft specific goals or strategies for a location or government, those targets, even if met, are unlikely to result in the intended physical outcomes. City and state governments would be wise to support broad strategy goals (like 20% GHG reduction) with prioritized specifics that can inform real projects leading to the goals (for instance, add 5 miles of bike path per year through 2020, or remove 5 parking garages and replace them with transit depots). While these results should not be used as predictions or forecasts, they can inform the crafters of future transportation policy as an opportunity for improvement or a cautionary tale.

Created2012-05
Description

There is increasing evidence that vehicle travel in developed countries may have peaked, contradicting many historical travel demand forecasts. The underlying causes of this peaking are still under debate and there has been a mobilization of research, largely focused at national scales, to study the explanatory drivers. There is, however,

There is increasing evidence that vehicle travel in developed countries may have peaked, contradicting many historical travel demand forecasts. The underlying causes of this peaking are still under debate and there has been a mobilization of research, largely focused at national scales, to study the explanatory drivers. There is, however, a dearth of research focused at the metropolitan scale where transportation policy and planning are frequently decided.

Using Los Angeles County, California, as a case study, we investigate the Peak Car theory and whether social, economic, and technical factors, including roadways that have become saturated at times, may be contributing to changes in travel behavior. After peaking in 2002, vehicle travel in Los Angeles County declined by 3.4 billion (or 4.1%) by 2010. The effects of changing fuel prices, fuel economy, population growth, increased utilization of alternate transportation modes, changes in driver demographics, income, and freight are first assessed. It is possible, and likely, that these factors alone explain the reduction in travel. However, the growth in congestion raises questions of how a constricting supply of roadway network capacity may contribute to travel behavior changes.

There have been no studies that have directly assessed how the maturing supply of infrastructure coupled with increasing demand affect travel behavior. We explore regional and urban factors in Los Angeles to provide insight into the drivers of Peak Car at city scales where the majority of travel occurs. The results show that a majority of the decline in VMT in Los Angeles can be attributed the rising fuel prices during the 2000s. While overall roadway network capacity is not yet a limiting factor for vehicle travel there is some evidence that suggests that congestion along certain corridors may be shifting some automobile travel to alternatives. The results also suggest that the relative impact of any factor on travel demand is likely to vary from one locale to another and Peak Car analysis across large geographic areas obscures the nuisances of travel behavior at a local scale.

Description

Mitigation of urban heat islands has become a goal for research and policy as urban environmental heat is a rapidly growing concern. Urban regions such as Phoenix, AZ are facing projected warming as urban populations grow and global climates warm (McCarthy et al. 2010), and severe urban heat can even

Mitigation of urban heat islands has become a goal for research and policy as urban environmental heat is a rapidly growing concern. Urban regions such as Phoenix, AZ are facing projected warming as urban populations grow and global climates warm (McCarthy et al. 2010), and severe urban heat can even lead to human mortality and morbidity (Berko et al. 2014). Increased urban heat may also have social and economic consequences such as by discouraging physical activity, reducing outdoor accessibility, and decreasing economic output (Stamatakis et al. 2013; Karner et al. 2015; Obradovich & Fowler 2017; Kjellstrom et al. 2009). Urban heat islands have been well documented in academic literature (Oke 1982; Arnfield 2003), and anthropogenic waste heat is often a major factor. The American Meteorological Society (2012) has said that anthropogenic waste heat may contribute “15 – 50 W/m2 to the local heat balance, and several hundred W/m2 in the center of large cities in cold climates and industrial areas.”

Anthropogenic waste heat from urban vehicle travel may be a notable contributor to the urban heat balance and the urban heat island effect, but little research has quantified and explored how changes in vehicle travel may influence local climates. Even with recent rapid improvements to engine efficiencies, modern automobiles still convert small amounts of fuel to useful energy. Typically, around two-thirds of energy from fuel in internal combustion engine vehicles is lost as waste heat through exhaust and coolant (Hsiao et al. 2010; Yu & Chau 2009; Saidur et al. 2009; Endo et al. 2007), and as much as 80% of fuel energy can be lost to waste heat under poor conditions (Orr et al. 2016). In addition, combustion of fuel generates water vapor and air pollution which may also affect the urban climate. Figure 1 displays where a typical combustion engine’s fuel energy is used and lost. There has been little research that quantifies the influence of vehicle travel on urban anthropogenic waste heat. According to Sailor and Lu (2004), most cities have peak anthropogenic waste heat values between 30 and 60 W m-2 (averaged across city) and heating from vehicles could make up as much as 62% of the total in summer months. Additionally, they found that vehicle waste heat could account for up to 300 W m-2 during rush hours over freeways. In another study, Hart & Sailor (2009) used in situ measurements in Portland, OR to evaluate spatial variability of air temperatures on urban roadways. They found that air masses near major roadways are some of the warmest in the region. Although some of the warming is attributed to pavement characteristics (imperviousness, low albedo), an average increase of 1.3 C was observed on weekdays relative to weekends along roadways. The authors offer increased weekday traffic density and building use as the likely contributors to this discrepancy. These previous studies indicates that vehicle related waste heat could be an important consideration in the urban energy balance. If significant, there may exist viable strategies to reduce anthropogenic waste heat from urban vehicle travel by increasing the fleet fuel economy and shifting to electric vehicles. This could offer cooling in urban areas around roadways were pedestrians are often found. Figure 2 visually demonstrates waste heat from vehicles (including an electric vehicle) in two thermal images.

Created2018-01-15
Description

With potential for automobiles to cause air pollution and greenhouse gas emissions relative to other modes, there is concern that automobiles accessing or egressing public transportation may significantly increase human and environmental impacts from door-to-door transit trips. Yet little rigorous work has been developed that quantitatively assesses the effects of

With potential for automobiles to cause air pollution and greenhouse gas emissions relative to other modes, there is concern that automobiles accessing or egressing public transportation may significantly increase human and environmental impacts from door-to-door transit trips. Yet little rigorous work has been developed that quantitatively assesses the effects of transit access or egress by automobiles.

This research evaluates the life-cycle impacts of first and last mile trips on multimodal transit. A case study of transit and automobile travel in the greater Los Angeles region is developed. First and last mile automobile trips were found to increase multimodal transit trip emissions, mitigating potential impact reductions from transit usage. In some cases, a multimodal transit trips with automobile access or egress may be higher than a competing automobile trip.

In the near-term, automobile access or egress in some Los Angeles transit systems may account for up to 66% of multimodal greenhouse gas trip emissions, and as much as 75% of multimodal air quality impacts. Fossil fuel energy generation and combustion, low vehicle occupancies, and longer trip distances contribute most to increased multimodal trip impacts. Spatial supply chain analysis indicates that life-cycle air quality impacts may occur largely locally (in Los Angeles) or largely remotely (elsewhere) depending on the propulsion method and location of upstream life-cycle processes. Reducing 10% of transit system greenhouse emissions requires a shift of 23% to 50% of automobile access or egress trips to a zero emissions mode.

A corresponding peer-reviewed journal publication is available here:
Greenhouse Gas and Air Quality Effects of Auto First-Last Mile Use With Transit, Christopher Hoehne and Mikhail Chester, 2017, Transportation Research Part D, 53, pp. 306-320,