A collection of scholarly work published by and supporting the Center for Earth Systems Engineering and Management (CESEM) at Arizona State University.

CESEM focuses on "earth systems engineering and management," providing a basis for understanding, designing, and managing the complex integrated built/human/natural systems that increasingly characterize our planet.

Works in this collection are particularly important in linking engineering, technology, and sustainability, and are increasingly intertwined with the work of ASU's Global Institute of Sustainability (GIOS).

Collaborating Institutions:
School of Sustainable Engineering and the Built Environment (SSEBE), Center for Earth Systems Engineering and Management
Displaying 1 - 2 of 2
Filtering by

Clear all filters

Description

While the scientific study of religion is not new, the topic has yet to be approached by Lifecycle Assessment (LCA). This work demonstrates a method for assessing the personal “cost” of “manufacturing” a mature religious adherent, or, a believer committed to a particular faith. By measuring such inputs as personal

While the scientific study of religion is not new, the topic has yet to be approached by Lifecycle Assessment (LCA). This work demonstrates a method for assessing the personal “cost” of “manufacturing” a mature religious adherent, or, a believer committed to a particular faith. By measuring such inputs as personal importance of faith, prayer, religious service attendance, religious experiences, and scripture reading, an assessment can be made of the quantity of such inputs required to engender enduring religious devotion. Ultimately, this study has demonstrated that the data typically collected in longitudinal surveys are insufficient to adequately support any firm quantitative conclusions, but the method proposed is sound and can be exploited when data becomes available.

Created2012-05
Description

As average temperatures and occurrences of extreme heat events increase in the Southwest, the water infrastructure that was designed to operate under historical temperature ranges may become increasingly vulnerable to component and operational failures. For each major component along the life cycle of water in an urban water infrastructural system,

As average temperatures and occurrences of extreme heat events increase in the Southwest, the water infrastructure that was designed to operate under historical temperature ranges may become increasingly vulnerable to component and operational failures. For each major component along the life cycle of water in an urban water infrastructural system, potential failure events and their semi-quantitative probabilities of occurrence were estimated from interview responses of water industry professionals. These failure events were used to populate event trees to determine the potential pathways to cascading failures in the system. The probabilities of the cascading failure scenarios under future conditions were then calculated and compared to the probabilities of scenarios under current conditions to assess the increased vulnerability of the system. We find that extreme heat events can increase the vulnerability of water systems significantly and that there are ways for water infrastructure managers to proactively mitigate these vulnerabilities before problems occur.