This collection collates faculty and staff collections alphabetically by surname.

Displaying 2,641 - 2,650 of 2,788
129510-Thumbnail Image.png
Description

Contemporary vaccine development relies less on empirical methods of vaccine construction, and now employs a powerful array of precise engineering strategies to construct immunogenic live vaccines. In this review, we will survey various engineering techniques used to create attenuated vaccines, with an emphasis on recent advances and insights. We will

Contemporary vaccine development relies less on empirical methods of vaccine construction, and now employs a powerful array of precise engineering strategies to construct immunogenic live vaccines. In this review, we will survey various engineering techniques used to create attenuated vaccines, with an emphasis on recent advances and insights. We will further explore the adaptation of attenuated strains to create multivalent vaccine platforms for immunization against multiple unrelated pathogens. These carrier vaccines are engineered to deliver sufficient levels of protective antigens to appropriate lymphoid inductive sites to elicit both carrier-specific and foreign antigen-specific immunity. Although many of these technologies were originally developed for use in Salmonella vaccines, application of the essential logic of these approaches will be extended to development of other enteric vaccines where possible. A central theme driving our discussion will stress that the ultimate success of an engineered vaccine rests on achieving the proper balance between attenuation and immunogenicity. Achieving this balance will avoid over-activation of inflammatory responses, which results in unacceptable reactogenicity, but will retain sufficient metabolic fitness to enable the live vaccine to reach deep tissue inductive sites and trigger protective immunity. The breadth of examples presented herein will clearly demonstrate that genetic engineering offers the potential for rapidly propelling vaccine development forward into novel applications and therapies which will significantly expand the role of vaccines in public health.

Created2014-07-31
129508-Thumbnail Image.png
Description

Vision and Change in Undergraduate Biology Education outlined five core concepts intended to guide undergraduate biology education: 1) evolution; 2) structure and function; 3) information flow, exchange, and storage; 4) pathways and transformations of energy and matter; and 5) systems. We have taken these general recommendations and created a Vision

Vision and Change in Undergraduate Biology Education outlined five core concepts intended to guide undergraduate biology education: 1) evolution; 2) structure and function; 3) information flow, exchange, and storage; 4) pathways and transformations of energy and matter; and 5) systems. We have taken these general recommendations and created a Vision and Change BioCore Guide—a set of general principles and specific statements that expand upon the core concepts, creating a framework that biology departments can use to align with the goals of Vision and Change. We used a grassroots approach to generate the BioCore Guide, beginning with faculty ideas as the basis for an iterative process that incorporated feedback from more than 240 biologists and biology educators at a diverse range of academic institutions throughout the United States. The final validation step in this process demonstrated strong national consensus, with more than 90% of respondents agreeing with the importance and scientific accuracy of the statements. It is our hope that the BioCore Guide will serve as an agent of change for biology departments as we move toward transforming undergraduate biology education.

ContributorsBrownell, Sara (Author) / Freeman, Scott (Author) / Wenderoth, Mary Pat (Author) / Crowe, Alison J. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-06-01
129507-Thumbnail Image.png
Description

The best-response dynamics is an example of an evolutionary game where players update their strategy in order to maximize their payoff. The main objective of this paper is to study a stochastic spatial version of this game based on the framework of interacting particle systems in which players are located

The best-response dynamics is an example of an evolutionary game where players update their strategy in order to maximize their payoff. The main objective of this paper is to study a stochastic spatial version of this game based on the framework of interacting particle systems in which players are located on an infinite square lattice. In the presence of two strategies, and calling a strategy selfish or altruistic depending on a certain ordering of the coefficients of the underlying payoff matrix, a simple analysis of the nonspatial mean-field approximation of the spatial model shows that a strategy is evolutionary stable if and only if it is selfish, making the system bistable when both strategies are selfish. The spatial and nonspatial models agree when at least one strategy is altruistic. In contrast, we prove that in the presence of two selfish strategies and in any spatial dimension, only the most selfish strategy remains evolutionary stable. The main ingredients of the proof are monotonicity results and a coupling between the best-response dynamics properly rescaled in space with bootstrap percolation to compare the infinite time limits of both systems.

ContributorsEvilsizor, Stephen (Author) / Lanchier, Nicolas (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-19
129505-Thumbnail Image.png
Description

Attempts to prepare low-valent molybdenum complexes that feature a pentadentate 2,6-bis(imino)pyridine (or pyridine diimine, PDI) chelate allowed for the isolation of two different products. Refluxing Mo(CO)6 with the pyridine-substituted PDI ligand, PyEtPDI, resulted in carbonyl ligand substitution and formation of the respective bis(ligand) compound (PyEtPDI)2Mo (1). This complex was investigated

Attempts to prepare low-valent molybdenum complexes that feature a pentadentate 2,6-bis(imino)pyridine (or pyridine diimine, PDI) chelate allowed for the isolation of two different products. Refluxing Mo(CO)6 with the pyridine-substituted PDI ligand, PyEtPDI, resulted in carbonyl ligand substitution and formation of the respective bis(ligand) compound (PyEtPDI)2Mo (1). This complex was investigated by single-crystal X-ray diffraction, and density functional theory calculations indicated that 1 possesses a Mo(0) center that back-bonds into the π*-orbitals of the unreduced PDI ligands. Heating an equimolar solution of Mo(CO)[subscript 6] and the phosphine-substituted PDI ligand, Ph2PPrPDI, to 120 °C allowed for the preparation of (Ph2PPrPDI)Mo(CO) (2), which is supported by a κ5-N,N,N,P,P-Ph2PPrPDI chelate. Notably, 1 and 2 have been found to catalyze the hydrosilylation of benzaldehyde at 90 °C, and the optimization of 2-catalyzed aldehyde hydrosilylation at this temperature afforded turnover frequencies of up to 330 h–1. Considering additional experimental observations, the potential mechanism of 2-mediated carbonyl hydrosilylation is discussed.

ContributorsPal, Raja (Author) / Groy, Thomas (Author) / Bowman, Amanda C. (Author) / Trovitch, Ryan (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-09-01
129504-Thumbnail Image.png
Description

The Writing Pal (W-Pal) is an intelligent tutoring system (ITS) designed to provide students with explicit writing strategy instruction and practice. W-Pal includes a suite of educational games developed to increase writing engagement and provide opportunities to practice writing strategies. In this study, first (L1) (n = 26) and second

The Writing Pal (W-Pal) is an intelligent tutoring system (ITS) designed to provide students with explicit writing strategy instruction and practice. W-Pal includes a suite of educational games developed to increase writing engagement and provide opportunities to practice writing strategies. In this study, first (L1) (n = 26) and second (L2) language (n = 16) students interacted with W-Pal over eight sessions. We collected students’ daily self- reports of engagement, motivation, and perceptions of performance, as well as their reported game attitudes (difficulty, helpfulness for learning, and enjoyment). Results indicated that, for all students, interactions with W-Pal led to increases in writing performance and more positive attitudes towards the system (engagement, motivation, and perceived performance). For L1 students, game difficulty was a significant predictor of boredom; however, for the L2 students, game enjoyment predicted both their motivation and perceived writing improvement. Notably, the L2 students’ game ratings accounted for more variance in these daily reports than did the ratings of L1 students. This study suggests that L1 and L2 students experience similar benefits offered by game-based strategy practice in an ITS. Further, the link between game attitudes and overall daily perceptions of training may be stronger for L2 students than L1 students.

ContributorsAllen, Laura (Author) / Crossley, Scott A. (Author) / Snow, Erica (Author) / McNamara, Danielle (Author) / Department of Psychology (Contributor)
Created2014-06-01
129503-Thumbnail Image.png
Description

Argumentation is now seen as a core practice for helping students engage with the construction and critique of scientific ideas and for making students scientifically literate. This article demonstrates a negotiation model to show how argumentation can be a vehicle to drive students to learn science’s big ideas. The model

Argumentation is now seen as a core practice for helping students engage with the construction and critique of scientific ideas and for making students scientifically literate. This article demonstrates a negotiation model to show how argumentation can be a vehicle to drive students to learn science’s big ideas. The model has six phases: creating a testable question, conducting an investigation cooperatively, constructing an argument in groups, negotiating arguments publicly, consulting the experts, and writing and reflecting individually. A fifth-grade classroom example from a unit on the human body serves as an example to portray how argumentation can be integrated into science classrooms.

ContributorsChen, Ying-Chih (Author) / Steenhoek, Joshua (Author) / Mary Lou Fulton Teachers College (Contributor)
Created2014-04-01
129502-Thumbnail Image.png
Description

Theories about Third Space or “in-betweeness” often lack an ethics that responds to the position of the majority of people who experience the violence of colonialism, as Amar Acheraïou argues. How can we think about hybridity with a more committed ethics? Hari Kunzru’s The Impressionist suggests that much of the

Theories about Third Space or “in-betweeness” often lack an ethics that responds to the position of the majority of people who experience the violence of colonialism, as Amar Acheraïou argues. How can we think about hybridity with a more committed ethics? Hari Kunzru’s The Impressionist suggests that much of the violence experienced by humans and animals under dominant or colonial thought stems from a traditional view of subjectivity as fixed, stable, knowable, distinct, and independent from others and the material world. Colonial logic views as “disposable” those regarded as not human or somehow less than human and often sacrifices them in order to maintain a stable, dominant notion of subjectivity, an exclusionary definition of Man, a continuous flow of extractionary capital from the colonies, and a particular hierarchy or ordering of the world. This article argues that The Impressionist portrays subjectivity not as fixed but in process, after Deleuze and Guattari’s “becoming animal,” as a way to challenge dominant thinking. The novel also emphasizes the nonhuman nature of subjectivity and human dependence on the nonhuman, including the environment, for existence. The Impressionist offers an important corrective to concepts of hybridity by emphasizing that those humans and nonhumans regarded as “disposable” demand ethical treatment.

ContributorsPrice, Jason D. (Author)
Created2014-01-01
129501-Thumbnail Image.png
Description

Metal matrix composites (MMCs) offer high strength, high stiffness, low density, and good fatigue resistance, while maintaining cost an acceptable level. Fatigue resistance of MMCs depends on many aspects of composite microstructure. Fatigue crack growth behavior is particularly dependent on the reinforcement characteristics and matrix microstructure. The goal of this

Metal matrix composites (MMCs) offer high strength, high stiffness, low density, and good fatigue resistance, while maintaining cost an acceptable level. Fatigue resistance of MMCs depends on many aspects of composite microstructure. Fatigue crack growth behavior is particularly dependent on the reinforcement characteristics and matrix microstructure. The goal of this work is to obtain a fundamental understanding of fatigue crack growth behavior in SiC particle-reinforced 2080 Al alloy composites. In situ X-ray synchrotron tomography was performed on two samples at low (R = 0.1) and at high (R = 0.6) R-ratios. The resulting reconstructed images were used to obtain three-dimensional (3D) rendering of the particles and fatigue crack. Behaviors of the particles and crack, as well as their interaction, were analyzed and quantified. Four-dimensional (4D) visual representations were constructed to aid in the overall understanding of damage evolution.

ContributorsHruby, Peter (Author) / Singh, Sudhanshu (Author) / Williams, Jason (Author) / Xiao, Xianghui (Author) / De Carlo, Francesco (Author) / Chawla, Nikhilesh (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-11-01