This collection includes images, including both historical photographs and illustrations, published in the Embryo Project Encyclopedia.

Displaying 1 - 4 of 4
Filtering by

Clear all filters

175286-Thumbnail Image.jpg
Description

This illustration shows George Beadle and Edward Tatum's experiments with Neurospora crassa that indicated that single genes produce single enzymes. The pair conducted the experiments at Stanford University in Palo Alto, California. Enzymes are types of proteins that can catalyze reactions inside cells, reactions that produce a number of things,

This illustration shows George Beadle and Edward Tatum's experiments with Neurospora crassa that indicated that single genes produce single enzymes. The pair conducted the experiments at Stanford University in Palo Alto, California. Enzymes are types of proteins that can catalyze reactions inside cells, reactions that produce a number of things, including nutrients that the cell needs. Neurospora crassa is a species of mold that grows on bread. In the early 1940s, Beadle and Tatum conducted an experiment to discover the abnormal genes in Neurospora mutants, which failed to produce specific nutrients needed to survive. (1) Beadle and Tatum used X-rays to cause mutations in the DNA of Neurospora, and then they grew the mutated Neurospora cells in glassware. (2) They grew several strains, represented in four groups of paired test tubes. For each group, Neurospora was grown in one of two types of growth media. One medium contained all the essential nutrients that the Neurospora needed to survive, which Beadle and Tatum called a complete medium. The second medium was a minimal medium and lacked nutrients that Neurospora needed to survive. If functioning normally and in the right conditions, however, Neurospora can produce these absent nutrients. (3) When Beadle and Tatum grew the mutated mold strains on both the complete and on the minimal media, all of the molds survived on the complete media, but not all of the molds survived on the minimal media (strain highlighted in yellow). (4) For the next step, the researchers added nutrients to the minimal media such that some glassware received an amino acid mixture (represented as colored squares) and other glassware received a vitamin mixture (represented as colored triangles) in an attempt to figure out which kind of nutrients the mutated molds needed. The researchers then took mold from the mutant mold strain that had survived on a complete medium and added that mold to the supplemented minimal media. They found that in some cases the mutated mold grew on media supplemented only with vitamins but not on media supplemented only with amino acids. (5) To discover which vitamins the mutant molds needed, Beadle and Tatum used several tubes with the minimal media, supplementing each one with a different vitamin, and then they attempted to grow the mutant mold in each tube. They found that different mutant strains of the mold grew only on media supplemented with different kinds of vitamins, for instance vitamin B6 for one strain, and vitamin B1 for another. In experiments not pictured, Beadle and Tatum found in step (4) that other strains of mutant mold grew on minimal media supplemented only with amino acids but not on minimal media supplemented only with vitamins. When they repeated step (5) on those strains and with specific kinds of amino acids in the different test tubes, they found that the some mutated mold strains grew on minimal media supplemented solely with one kind of amino acid, and others strains grew only on minimal media supplemented with other kinds of amino acids. For both the vitamins and amino acid cases, Beadle and Tatum concluded that the X-rays had mutated different genes in Neurospora, resulting in different mutant strains of Neurospora cells. In a cell of a given strain, the X-rays had changed the gene normally responsible for producing an enzyme that catalyzed a vitamin or an amino acid. As a result, the Neurospora cell could no longer produce that enzyme, and thus couldn't catalyze a specific nutrient.

Created2016-10-12
175232-Thumbnail Image.jpg
Description

Neurospora crassa is a red mold that scientists use to study genetics. N. crassa commonly grows on bread as shown in the top left corner of this figure. To culture the mold in lab, researchers grow it in glassware such as test tubes, Erlenmeyer flasks, and petri dishes, as shown

Neurospora crassa is a red mold that scientists use to study genetics. N. crassa commonly grows on bread as shown in the top left corner of this figure. To culture the mold in lab, researchers grow it in glassware such as test tubes, Erlenmeyer flasks, and petri dishes, as shown in the top right corner of the figure. In the glassware, researchers place a gel, called a medium, of agar, sucrose, salts, and vitamins. The mold grows on the medium, and cotton stoppers prevent anything from contaminating the mold. Under a microscope, researchers can see the structure of the mold's ascospores, which are haploid and oval-shaped structures and function in the mold's life cycle as seeds function in a plant's life cycle.

Created2016-10-11
175192-Thumbnail Image.jpg
Description

This diagram shows the life cycle of Neurospora crassa, a mold that grows on bread. N. crassa can reproduce through an asexual cycle or a sexual cycle. The asexual cycle (colored as a purple circle), begins in this figure with (1a) vegetative mycelium, which are strands of mature fungus. Some

This diagram shows the life cycle of Neurospora crassa, a mold that grows on bread. N. crassa can reproduce through an asexual cycle or a sexual cycle. The asexual cycle (colored as a purple circle), begins in this figure with (1a) vegetative mycelium, which are strands of mature fungus. Some of the strands form bulbs (2a) in a process called conidiation. From those bulbs develop the conidia, which are spores. Next, (3a) a single conidium separates from its strand and elongates until it forms mycelium. The sexual cycle (colored as an orange circle) also starts with the (1b) vegetative mycelium. The strands develop into a structure called the proto-perithecium, and reproduction involves the proto-perithecium interacting with the conidia from a different mycelium. Reproduction also involves two mating types, called type A and type a. In reproduction, type A pairs with type a, and a conidium can be of either type, as can a proto-perithecium. A proto-perithecium fertilized by a conidium of the opposite mating type (2b) will develop into a perithecium. Inside the perithecium, croziers develop and mature into asci. (3b) In a maturing ascus, there are two nuclei (one represented as a white circle and one as a black circle), one of which comes from the conidium and the other from the proto-perithecium. Each nuclei has only one set of chromosomes (haploid). The two haploid nuclei fuse into a diploid nucleus (represented as a half black half white circle). The nucleus then divides, separating into two nuclei each with one set of chromosomes. Those nuclei duplicate themselves (represented as two white circles and two black circles), and then all the nuclei duplicate themselves again (represented as four white circles and four black circles). This process yields eight haploid ascospores within a mature ascus. Ascospores are spores, and function for the mold as do seeds for plants. The mature perithecium releases its ascospores (4b), which germinate and grow into mycelium. In the 1930s and 1940s, George Beadle and Ed Tatum collected the spores of irradiated N. crassa to study how genes produced enzymes.

Created2016-10-12
174698-Thumbnail Image.jpg
Created1925