This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 15
Filtering by

Clear all filters

173245-Thumbnail Image.png
Description

Published in 1971, Adenocarcinoma of the Vagina: Association of Maternal Stilbestrol Therapy with Tumor Appearance in Young Women, by Arthurs L. Herbst and colleagues, was the first piece of literature connecting maternal use of the drug diethylstilbestrol (DES), also called stilbestrol, with the development of a rare and severe form

Published in 1971, Adenocarcinoma of the Vagina: Association of Maternal Stilbestrol Therapy with Tumor Appearance in Young Women, by Arthurs L. Herbst and colleagues, was the first piece of literature connecting maternal use of the drug diethylstilbestrol (DES), also called stilbestrol, with the development of a rare and severe form of vaginal cancer in young women. Diethylstilbestrol was later classified as an endocrine disruptor, a substance that disrupts the hormonal function of the body in those exposed to it during development or later in life. After Herbst and his team established the connection between DES and the occurrence of breast cancer, cervical cancer, infertility, and reproductive abnormalities, the US federal government banned use the drug for pregnant women. The article was published in the New England Journal of Medicine.

Created2017-04-12
173318-Thumbnail Image.png
Description

Edward Charles Dodds researched the function and effects of natural and artificial hormones on the endocrine system in England during the twentieth century. Though he first worked with hormones such as insulin, Dodds focused on the effects of estrogen in the body and how to replicate those effects with artificial

Edward Charles Dodds researched the function and effects of natural and artificial hormones on the endocrine system in England during the twentieth century. Though he first worked with hormones such as insulin, Dodds focused on the effects of estrogen in the body and how to replicate those effects with artificial substances. In 1938, along with chemist Robert Robinson, Dodds synthesized the first synthetic estrogen called diethylstilbestrol. Despite the wide use of diethylstilbestrol to treat a variety of hormonal problems like miscarriages during pregnancy and menopause, Dodds argued against the use of synthetic substances in the human body due to their unknown effects. Just before Dodds's death, his hypotheses were confirmed when researchers showed that people exposed to diethylstilbestrol often developed cancer. Dodds was one of the first researchers to investigate the endocrine or hormone system in humans, and his research led to the creation of other synthetic hormones used in contraceptive pills and hormone replacements.

Created2017-03-06
173253-Thumbnail Image.png
Description

Scientists use cerebral organoids, which are artificially produced miniature organs that represent embryonic or fetal brains and have many properties similar to them, to help them study developmental disorders like microcephaly. In human embryos, cerebral tissue in the form of neuroectoderm appears within the first nine weeks of human development,

Scientists use cerebral organoids, which are artificially produced miniature organs that represent embryonic or fetal brains and have many properties similar to them, to help them study developmental disorders like microcephaly. In human embryos, cerebral tissue in the form of neuroectoderm appears within the first nine weeks of human development, and it gives rise to the brain and spinal cord. In the twenty-first century, Juergen Knoblich and Madeleine Lancaster at the Institute of Molecular Biotechnology in Vienna, Austria, grew cerebral organoids from pluripotent stem cells as a model to study developmental disorders in embryonic and fetal brains. One such disorder is microcephaly, a condition in which brain size and the number of neurons in the brain are abnormally small. Scientists use cerebral organoids, which they've grown in labs, because they provide a manipulable model for studying how neural cells migrate during development, the timing of neural development, and how genetic errors can result in developmental disorders.

Created2017-05-12
173367-Thumbnail Image.png
Description

William Withey Gull studied paraplegia, anorexia, and hormones as a physician in England during the nineteenth century. In addition to caring for patients, he described the role of the posterior column of the spinal cord in paraplegia, and he was among the first to describe the conditions of anorexia and

William Withey Gull studied paraplegia, anorexia, and hormones as a physician in England during the nineteenth century. In addition to caring for patients, he described the role of the posterior column of the spinal cord in paraplegia, and he was among the first to describe the conditions of anorexia and of hypochondria. He also researched the effects of thyroid hormone deficiencies in women who had malfunctioning thyroid glands. Gull's research on thyroid hormone confirmed that chemicals in the body directly affect health, and he contributed to the foundation of endocrinology, the scientific field for the study of hormones.

Created2017-05-07
173377-Thumbnail Image.png
Description

Charles Raymond Greene studied hormones and the effects of environmental conditions such as high-altitude on physiology in the twentieth century in the United Kingdom. Green researched frostbite and altitude sickness during his mountaineering expeditions, helping to explain how extreme environmental conditions effect respiration. Greene’s research on hormones led to a

Charles Raymond Greene studied hormones and the effects of environmental conditions such as high-altitude on physiology in the twentieth century in the United Kingdom. Green researched frostbite and altitude sickness during his mountaineering expeditions, helping to explain how extreme environmental conditions effect respiration. Greene’s research on hormones led to a collaboration with physician Katarina Dalton that culminated in the development of the theory that progesterone caused premenstrual syndrome, a theory that became the basis for later research on the condition. In his later career Greene formed the Thyroid Club of London that brought together specialists in the emerging field on endocrinology. Greene’s research on progesterone and thyroid helped researchers study how of the endocrine system functions in women’s reproductive health.

Created2017-04-27
173180-Thumbnail Image.png
Description

In 1953, Raymond Greene and Katharina Dalton, who were doctors in the UK, published The Premenstrual Syndrome in the British Medical Journal. In their article, Dalton and Greene established the term premenstrual syndrome (PMS). The authors defined PMS as a cluster of symptoms that include bloating, breast pain, migraine-headache, fatigue,

In 1953, Raymond Greene and Katharina Dalton, who were doctors in the UK, published The Premenstrual Syndrome in the British Medical Journal. In their article, Dalton and Greene established the term premenstrual syndrome (PMS). The authors defined PMS as a cluster of symptoms that include bloating, breast pain, migraine-headache, fatigue, anxiety, depression, and irritability. The article states that the symptoms begin one to two weeks before menstruation during the luteal phase of the menstrual cycle, and they disappear upon the onset of the menstrual period. Menstruation is the monthly series of changes a woman's body undergoes in preparation for the possibility of pregnancy. Dalton and Greene described how progesterone affected women during different phases of their menstrual cycles. The paper convinced many about the phenomenon of PMS, and docotors and scientists adopted Dalton's and Green's term. The paper furthered research about the role of hormones in physiology and of conditions linked to the reproductive system.

Created2017-06-23
173186-Thumbnail Image.png
Description

During the 1870s and early 1880s, the British morphologist Francis Maitland Balfour contributed in important ways to the budding field of evolutionary embryology, especially through his comparative embryological approach to uncovering ancestral relationships between groups. As developmental biologist and historian Brian Hall has observed, the field of evolutionary embryology in

During the 1870s and early 1880s, the British morphologist Francis Maitland Balfour contributed in important ways to the budding field of evolutionary embryology, especially through his comparative embryological approach to uncovering ancestral relationships between groups. As developmental biologist and historian Brian Hall has observed, the field of evolutionary embryology in the nineteenth century was the historical ancestor of modern-day evolutionary developmental biology. Balfour's work was notably inspired by Charles Darwin's theory of evolution and Ernst Haeckel's account of the relationships between embryology and evolution. Only a decade after Balfour's program of research began, an alpine climbing accident robbed Britain of its most promising embryologist.

Created2010-06-29
173106-Thumbnail Image.png
Description

Karl Landsteiner studied blood types in Europe and in the United States in the late nineteenth and early twentieth centuries. Landsteiner won the Nobel Prize in Physiology or Medicine in 1930 for detailing immunological reactions in the ABO blood group system. The ABO blood group system divides human blood into

Karl Landsteiner studied blood types in Europe and in the United States in the late nineteenth and early twentieth centuries. Landsteiner won the Nobel Prize in Physiology or Medicine in 1930 for detailing immunological reactions in the ABO blood group system. The ABO blood group system divides human blood into one of four types based on the antibodies that are present on each cell. Landsteiner's work with blood types led physicians to safely perform blood transfusions and organ transplants. Additionally, Landsteiner researched the Rh blood factor, a protein marker on the surface of blood cells and that can impact pregnancy.

Created2017-02-17
173787-Thumbnail Image.png
Description

In 1962 the journal Acta Biotheoretica published the final work of the biologist Edward Stuart Russell, a full eight years after his death. Entitled The Diversity of Animals: an Evolutionary Study, this short, unfinished manuscript on evolution received little recognition in the scientific presses despite both its technical discussion of

In 1962 the journal Acta Biotheoretica published the final work of the biologist Edward Stuart Russell, a full eight years after his death. Entitled The Diversity of Animals: an Evolutionary Study, this short, unfinished manuscript on evolution received little recognition in the scientific presses despite both its technical discussion of adaptations in decapods (crabs, shrimp, etc.) and its different approach to evolutionary theory. The precise reason for this neglect is unclear. This book is a continuation of Russell's philosophical perspective, organicism, an interpretation that focuses on the organism as the primary unit of analysis for the biological sciences. Russell first argued for this position in several of his earlier works, such as The Interpretation of Development and Heredity (1930) and The Directiveness of Organic Activities (1946). What was new in The Diversity of Animals lies in Russell's orthogenetic theory of evolution. By "orthogenetic" he means evolutionary change in definite directions. The overall thesis of this work is that transformations in evolution that occur in early ontogenesis, or development, are the best explanation for most diversity in nature. The consequence of Russell's argument is that an understanding of development is fundamental to an explanation of the major transformations in the evolutionary history of life.

Created2010-06-27
173729-Thumbnail Image.png
Description

Of Sir D'Arcy Thompson's nearly 300 publications, the theoretical treatise On Growth and Form, first published in 1917, remains the principal work for which he is remembered. This substantial book is still in print today, and merited an editorial review and introductory essays by two important twentieth century biologists, John

Of Sir D'Arcy Thompson's nearly 300 publications, the theoretical treatise On Growth and Form, first published in 1917, remains the principal work for which he is remembered. This substantial book is still in print today, and merited an editorial review and introductory essays by two important twentieth century biologists, John Tyler Bonner and Stephen Jay Gould. Growth and Form was immediately well-received for both its literary style and its scientific significance, as discussed by the biologist Sir Peter Medawar. Despite being almost continuously in print since its first publication, the exact influence of Growth and Form on the biological sciences, although widely acknowledged, is yet difficult to characterize. In this work Thompson aimed to unite physics and biology through an analysis of the physical limitations to the growth and structure of organisms. For developmental biologists in particular, Thompson's theory on the transformation of biological forms, presented in the final chapter of Growth and Form, was thought provoking.

Created2010-06-27