This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 42
Filtering by

Clear all filters

173938-Thumbnail Image.png
Description

Isotretinoin is a molecule and a byproduct (metabolite) of vitamin A, and in greater than normal amounts in pregnant women, it can cause fetal abnormalities including cleft lips, ear and eye defects, and mental retardation. Isotretinoin is commonly called by its trade name Accutane, and it's a chemical compound derived

Isotretinoin is a molecule and a byproduct (metabolite) of vitamin A, and in greater than normal amounts in pregnant women, it can cause fetal abnormalities including cleft lips, ear and eye defects, and mental retardation. Isotretinoin is commonly called by its trade name Accutane, and it's a chemical compound derived from vitamin A, or retinoic acid. Doctors prescribe isotretinoin to treat severe acne. For pregnant women, too much vitamin A or isotretinoin can also cause greater than normal rates of stillbirths and fetal disintegrations after the ninth week of gestation. Women who use isotretinoin during the first trimester of their pregnancies, even in small amounts, risk defects to their fetuses such as external ear malformations, cleft palates, undersized jaws (micrognathia), a variety of heart defects, buildups of fluids inside the skulls that leads to brain swelling (hydrocephalus), small heads and brains (microcephaly), and mental retardation.

Created2014-07-20
173939-Thumbnail Image.png
Description

Although best known for his work with the fruit fly, for which he earned a Nobel Prize and the title "The Father of Genetics," Thomas Hunt Morgan's contributions to biology reach far beyond genetics. His research explored questions in embryology, regeneration, evolution, and heredity, using a variety of approaches.

Created2007-09-25
173408-Thumbnail Image.png
Description

Josef Warkany studied the environmental causes of birth defects in the United States in the twentieth century. Warkany was one of the first researchers to show that factors in the environment could cause birth defects, and he helped to develop guidelines for the field of teratology, the study of birth

Josef Warkany studied the environmental causes of birth defects in the United States in the twentieth century. Warkany was one of the first researchers to show that factors in the environment could cause birth defects, and he helped to develop guidelines for the field of teratology, the study of birth defects. Prior to Warkany’s work, scientists struggled to explain if or how environmental agents could cause birth defects. Warkany demonstrated that a deficiency or excess of vitamin A in maternal nutrition could cause birth defects. He also established that mercury in teething powders increased infant mortality rates. Warkany showed how substances outside the human body could adversely affect conception, growth, and development of the human fetus in utero.

Created2017-05-26
173263-Thumbnail Image.png
Description

The article Experimental Studies on Congenital Malformations was published in the Journal of Chronic Diseases in 1959. The author, James G. Wilson, studied embryos and birth defects at the University of Florida Medical School in Gainesville, Florida. In his article, Wilson reviewed experiments on birds and mammals from the previous

The article Experimental Studies on Congenital Malformations was published in the Journal of Chronic Diseases in 1959. The author, James G. Wilson, studied embryos and birth defects at the University of Florida Medical School in Gainesville, Florida. In his article, Wilson reviewed experiments on birds and mammals from the previous forty years to provide general principles and guidelines in the study of birth defects and teratogens, which are things that cause birth defects. Those principles included what species are convenient for conducting teratological research, what principles act in human embryological and fetal development, and what agents impact those processes. Wilson's article was one of the first attempts in the twentieth century to synthesize basic research conducted in the field of teratology. The article helped to establish teratology as a field in medicine during the twentieth century.

Created2017-06-15
173271-Thumbnail Image.png
Description

Sidney Q. Cohlan studied birth defects in the US during the twentieth century. Cohlan helped to discover that if a pregnant woman ate too much vitamin A her fetus faced a higher than normal risk of teratogenic effects, such as cleft palate. A teratogen is a substance that causes malformation

Sidney Q. Cohlan studied birth defects in the US during the twentieth century. Cohlan helped to discover that if a pregnant woman ate too much vitamin A her fetus faced a higher than normal risk of teratogenic effects, such as cleft palate. A teratogen is a substance that causes malformation of a developing organism. Cohlan also identified the teratogenic effects of several other substances including a lack of normal magnesium and prenatal exposure to the antibiotic tetracycline. Cohlan's experiments with vitamins and other chemicals brought attention to how nutrition and environmental agents adversely affect human pregnancy outcomes.

Created2017-06-18
173286-Thumbnail Image.png
Description

Regeneration is a fascinating phenomenon. The fact that many organisms have the capacity to regenerate lost parts and even remake complete copies of themselves is difficult to fathom; so difficult, in fact, that for a very long time people were reluctant to believe regeneration actually took place. It

Regeneration is a fascinating phenomenon. The fact that many organisms have the capacity to regenerate lost parts and even remake complete copies of themselves is difficult to fathom; so difficult, in fact, that for a very long time people were reluctant to believe regeneration actually took place. It seemed unbelievable that some organisms could re-grow lost limbs, organs, and other body parts. If only we could do the same! Unfortunately, our regenerative capacities are limited to hair, nails, and skin, while the liver and a few other tissues display more restricted regenerative abilities. What if we could grow back lost limbs, or damaged organs? This question has inspired many stories, dating back to Greek mythology, wherein Prometheus was doomed to regenerate his liver after it had been devoured by birds. Regeneration has permeated many imaginations; it has appeared in many literary and religious texts, and has also provoked much interest from the scientific community.

Created2009-06-10
Description

Thalidomide is a sedative drug introduced to European markets on 1 October 1957 after extensive testing on rodent embryos to ensure its safety. Early laboratory tests in rodent populations showed that pregnant rodents could safely use it, so doctors prescribed Thalidomide to treat morning sickness in pregnant women. However, in

Thalidomide is a sedative drug introduced to European markets on 1 October 1957 after extensive testing on rodent embryos to ensure its safety. Early laboratory tests in rodent populations showed that pregnant rodents could safely use it, so doctors prescribed Thalidomide to treat morning sickness in pregnant women. However, in humans Thalidomide interfered with embryonic and fetal development in ways not observed in rodent tests. Pregnant women who take Thalidomide are at grater than normal risk for spontaneous abortion and for giving birth to children with developmental anomalies such as shortened, absent, or extra limbs, as well as a variety of heart, ear, and internal organ defects. The failure of rodent models to inform scientists of Thalidomide's teratogenicity in humans ignited debate about the proper use of cross-species testing during drug development.

Created2014-03-07
173192-Thumbnail Image.png
Description

Although educated as a scientist who studied with both August Weismann and Ernst Heinrich Haeckel, Hans Adolf Eduard Driesch was first employed as a professor of philosophy and became a strong proponent of vitalism. Driesch was born on 28 October 1867, the only child of Josefine Raudenkolb and Paul Driesch.

Although educated as a scientist who studied with both August Weismann and Ernst Heinrich Haeckel, Hans Adolf Eduard Driesch was first employed as a professor of philosophy and became a strong proponent of vitalism. Driesch was born on 28 October 1867, the only child of Josefine Raudenkolb and Paul Driesch. He grew up in a wealthy merchant family in Hamburg, Germany, where he was educated at the humanistic Gymnasium Gelehrtenschule des Johanneums that had been founded by a friend of Martin Luther. In 1886 he spent two summers studying with Weismann at the University of Freiburg and then entered the University of Jena, where he received his doctorate in 1889 with a study of hydroid colonies. By 1890 Driesch had lost interest in Haeckel's popular phylogenetic approach to zoology and instead focused on experimental embryology.

Created2007-11-01
173195-Thumbnail Image.png
Description

This video is composed of a sequence of films created by John Tyler Bonner in the 1940s to show the life cycle of the cellular slime mold Dictyostelium discoideum. As only the second person to study slime molds, Bonner frequently encountered audiences who had never heard of, let alone seen,

This video is composed of a sequence of films created by John Tyler Bonner in the 1940s to show the life cycle of the cellular slime mold Dictyostelium discoideum. As only the second person to study slime molds, Bonner frequently encountered audiences who had never heard of, let alone seen, the unusual organism. He therefore decided to create a film to present at seminars in order to introduce his object of study; the time-lapsed film captivated audiences, indeed Bonner has described that the film "always stole the show." Bonner began working in the biology department at Princeton University in 1947, and although Princeton appears in the opening title, Bonner actually made the film for his senior thesis as an undergraduate at Harvard University with some early assistance from Frank Smith, a photographer. Although unsure of name of the device that was used for filming, he has described it as "the most amazing antique contraption that belonged to my professor, Wm. H. Weston. It consisted of a gigantic and VERY heavy set of brass gears that had numerous possible speeds that turned a crank on the side of an old 16 mm box camera that pointed into the ocular of a microscope. The electric motor that propelled it made such vibrations that the whole apparatus had to be on a separate table and not touching the microscope."

Created2008-05-02
173679-Thumbnail Image.png
Description

The gradient theory is recognized as Charles Manning Child's most significant scientific contribution. Gradients brought together Child's interest in development and his fascination with the origins of individuality and organization. The gradient theory grew from his studies of regeneration, which were largely based on work he conducted with

The gradient theory is recognized as Charles Manning Child's most significant scientific contribution. Gradients brought together Child's interest in development and his fascination with the origins of individuality and organization. The gradient theory grew from his studies of regeneration, which were largely based on work he conducted with marine invertebrates, such as the ascidian flat worm, planaria and the hydroid, tubularia. Child observed that regeneration occurred in a graded process along the axis of the organism, with the characteristics of each physiological process seemingly determined by its location along the axis. To explain these observations, Child posited the existence of physiological factors working to guide the regenerative process. He was convinced that these differences along the gradients could be explained quantitatively.

Created2009-08-01