This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 25
Filtering by

Clear all filters

173939-Thumbnail Image.png
Description

Although best known for his work with the fruit fly, for which he earned a Nobel Prize and the title "The Father of Genetics," Thomas Hunt Morgan's contributions to biology reach far beyond genetics. His research explored questions in embryology, regeneration, evolution, and heredity, using a variety of approaches.

Created2007-09-25
173916-Thumbnail Image.png
Description

The US 2nd Circuit Court of Appeals' 1984 decision United States v. University Hospital, State University Hospital of New York at Stony Brook set a significant precedent for affirming parental privilege to make medical decisions for handicapped newborns, while limiting the ability of the federal government to intervene. The ruling

The US 2nd Circuit Court of Appeals' 1984 decision United States v. University Hospital, State University Hospital of New York at Stony Brook set a significant precedent for affirming parental privilege to make medical decisions for handicapped newborns, while limiting the ability of the federal government to intervene. The ruling stemmed from the 1983 case involving an infant born with severe physical and mental congenital defects; the infant was only identified as Baby Jane Doe. After her parents opted against corrective surgery for some of her deformities, Baby Jane Doe became the epicenter of a national right-to-life debate that had been previously sparked one year prior with the case of Baby Doe, an Indiana infant born with similarly severe handicaps.

Created2011-05-11
173286-Thumbnail Image.png
Description

Regeneration is a fascinating phenomenon. The fact that many organisms have the capacity to regenerate lost parts and even remake complete copies of themselves is difficult to fathom; so difficult, in fact, that for a very long time people were reluctant to believe regeneration actually took place. It

Regeneration is a fascinating phenomenon. The fact that many organisms have the capacity to regenerate lost parts and even remake complete copies of themselves is difficult to fathom; so difficult, in fact, that for a very long time people were reluctant to believe regeneration actually took place. It seemed unbelievable that some organisms could re-grow lost limbs, organs, and other body parts. If only we could do the same! Unfortunately, our regenerative capacities are limited to hair, nails, and skin, while the liver and a few other tissues display more restricted regenerative abilities. What if we could grow back lost limbs, or damaged organs? This question has inspired many stories, dating back to Greek mythology, wherein Prometheus was doomed to regenerate his liver after it had been devoured by birds. Regeneration has permeated many imaginations; it has appeared in many literary and religious texts, and has also provoked much interest from the scientific community.

Created2009-06-10
173192-Thumbnail Image.png
Description

Although educated as a scientist who studied with both August Weismann and Ernst Heinrich Haeckel, Hans Adolf Eduard Driesch was first employed as a professor of philosophy and became a strong proponent of vitalism. Driesch was born on 28 October 1867, the only child of Josefine Raudenkolb and Paul Driesch.

Although educated as a scientist who studied with both August Weismann and Ernst Heinrich Haeckel, Hans Adolf Eduard Driesch was first employed as a professor of philosophy and became a strong proponent of vitalism. Driesch was born on 28 October 1867, the only child of Josefine Raudenkolb and Paul Driesch. He grew up in a wealthy merchant family in Hamburg, Germany, where he was educated at the humanistic Gymnasium Gelehrtenschule des Johanneums that had been founded by a friend of Martin Luther. In 1886 he spent two summers studying with Weismann at the University of Freiburg and then entered the University of Jena, where he received his doctorate in 1889 with a study of hydroid colonies. By 1890 Driesch had lost interest in Haeckel's popular phylogenetic approach to zoology and instead focused on experimental embryology.

Created2007-11-01
173195-Thumbnail Image.png
Description

This video is composed of a sequence of films created by John Tyler Bonner in the 1940s to show the life cycle of the cellular slime mold Dictyostelium discoideum. As only the second person to study slime molds, Bonner frequently encountered audiences who had never heard of, let alone seen,

This video is composed of a sequence of films created by John Tyler Bonner in the 1940s to show the life cycle of the cellular slime mold Dictyostelium discoideum. As only the second person to study slime molds, Bonner frequently encountered audiences who had never heard of, let alone seen, the unusual organism. He therefore decided to create a film to present at seminars in order to introduce his object of study; the time-lapsed film captivated audiences, indeed Bonner has described that the film "always stole the show." Bonner began working in the biology department at Princeton University in 1947, and although Princeton appears in the opening title, Bonner actually made the film for his senior thesis as an undergraduate at Harvard University with some early assistance from Frank Smith, a photographer. Although unsure of name of the device that was used for filming, he has described it as "the most amazing antique contraption that belonged to my professor, Wm. H. Weston. It consisted of a gigantic and VERY heavy set of brass gears that had numerous possible speeds that turned a crank on the side of an old 16 mm box camera that pointed into the ocular of a microscope. The electric motor that propelled it made such vibrations that the whole apparatus had to be on a separate table and not touching the microscope."

Created2008-05-02
173915-Thumbnail Image.png
Description

The Baby Doe Rules represent the first attempt by the US government to directly intervene in treatment options for neonates born with congenital defects. The name of the rule comes from the controversial 1982 case of a Bloomington, Indiana infant Baby Doe, a name coined by the media. The Baby

The Baby Doe Rules represent the first attempt by the US government to directly intervene in treatment options for neonates born with congenital defects. The name of the rule comes from the controversial 1982 case of a Bloomington, Indiana infant Baby Doe, a name coined by the media. The Baby Doe Rules mandate that, as a requirement for federal funding, hospitals and physicians must provide maximal care to any impaired infant, unless select exceptions are met. If a physician or parent chooses to withhold full treatment when the exceptions are not met, they are liable for medical neglect. After a prolonged legal battle, President Ronald Reagan signed the law on 9 October 1984 as an amendment to the Child Abuse Prevention and Treatment Act (CAPTA) of 1974. Since then, the Baby Doe Rules have influenced both the parents' right to make medical decisions for their child and the way laws can affect treatment options in the US.

Created2011-05-12
173679-Thumbnail Image.png
Description

The gradient theory is recognized as Charles Manning Child's most significant scientific contribution. Gradients brought together Child's interest in development and his fascination with the origins of individuality and organization. The gradient theory grew from his studies of regeneration, which were largely based on work he conducted with

The gradient theory is recognized as Charles Manning Child's most significant scientific contribution. Gradients brought together Child's interest in development and his fascination with the origins of individuality and organization. The gradient theory grew from his studies of regeneration, which were largely based on work he conducted with marine invertebrates, such as the ascidian flat worm, planaria and the hydroid, tubularia. Child observed that regeneration occurred in a graded process along the axis of the organism, with the characteristics of each physiological process seemingly determined by its location along the axis. To explain these observations, Child posited the existence of physiological factors working to guide the regenerative process. He was convinced that these differences along the gradients could be explained quantitatively.

Created2009-08-01
173829-Thumbnail Image.png
Description

The French flag model represents how embryonic cells receive and respond to genetic information and subsequently differentiate into patterns. Created by Lewis Wolpert in the late 1960s, the model uses the French tricolor flag as visual representation to explain how embryonic cells can interpret genetic code to create the same

The French flag model represents how embryonic cells receive and respond to genetic information and subsequently differentiate into patterns. Created by Lewis Wolpert in the late 1960s, the model uses the French tricolor flag as visual representation to explain how embryonic cells can interpret genetic code to create the same pattern even when certain pieces of the embryo are removed. Wolpert's model has provided crucial theoretical framework for investigating universal mechanisms of pattern formation during development.

Created2011-05-19
172833-Thumbnail Image.png
Description

Christiane Nusslein-Volhard studied how genes control embryonic development in flies and in fish in Europe during the twentieth and twenty-first centuries. In the 1970s, Nusslein-Volhard focused her career on studying the genetic control of development in the fruit fly Drosophila melanogaster. In 1988, Nusslein-Volhard identified the first described morphogen, a

Christiane Nusslein-Volhard studied how genes control embryonic development in flies and in fish in Europe during the twentieth and twenty-first centuries. In the 1970s, Nusslein-Volhard focused her career on studying the genetic control of development in the fruit fly Drosophila melanogaster. In 1988, Nusslein-Volhard identified the first described morphogen, a protein coded by the gene bicoid in flies. In 1995, along with Eric F. Wieschaus and Edward B. Lewis, she received the Nobel Prize in Physiology or Medicine for the discovery of genes that establish the body plan and segmentation in Drosophila. Nusslein-Volhard also investigated the genetic control of embryonic development to zebrafish, further generalizing her findings and helping establishing zebrafish as a model organism for studies of vertebrate development.

Created2012-02-16
172879-Thumbnail Image.png
Description

Born in Ypsilanti, Michigan, on 2 February 1869, Charles Manning Child was the only surviving child of Mary Elizabeth and Charles Chauncey Child, a prosperous, old New England family. Growing up in Higganum, Connecticut, Child was interested in biology from an early age. He made extensive collections of plants and

Born in Ypsilanti, Michigan, on 2 February 1869, Charles Manning Child was the only surviving child of Mary Elizabeth and Charles Chauncey Child, a prosperous, old New England family. Growing up in Higganum, Connecticut, Child was interested in biology from an early age. He made extensive collections of plants and minerals on his family farm and went on to study biology at Wesleyan University, commuting from his family home. Child received his PhB in 1890 and MS in biology in 1892, and then went on to study in Leipzig after his parents death. He worked for a short time in the psychology laboratory of Wilhelm Wundt, and then pursued studies in zoology under the supervision of Rudolf Leuckhart. His doctoral dissertation investigated morphological aspects of insect sense organs. Leuckhart emphasized the functional purpose of morphological structures and led many of his students to develop and defend the notion of teleology, including Child, who completed his PhD in 1894.

Created2007-10-23