This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 23
Filtering by

Clear all filters

173931-Thumbnail Image.png
Description

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of cells transforms into a two-layered embryo made of an inner layer of endoderm and an outer layer of ectoderm. In more complex organisms, like vertebrates, these two primary germ layers interact to give rise to a third germ layer, called mesoderm. Regardless of the presence of two or three layers, endoderm is always the inner-most layer. Endoderm forms the epithelium-- a type of tissue in which the cells are tightly linked together to form sheets-- that lines the primitive gut. From this epithelial lining of the primitive gut, organs like the digestive tract, liver, pancreas, and lungs develop.

Created2013-11-17
173932-Thumbnail Image.png
Description

The sex of a reptile embryo partly results from the production of sex hormones during development, and one process to produce those hormones depends on the temperature of the embryo's environment. The production of sex hormones can result solely from genetics or from genetics in combination with the influence of

The sex of a reptile embryo partly results from the production of sex hormones during development, and one process to produce those hormones depends on the temperature of the embryo's environment. The production of sex hormones can result solely from genetics or from genetics in combination with the influence of environmental factors. In genotypic sex determination, also called genetic or chromosomal sex determination, an organism's genes determine which hormones are produced. Non-genetic sex determination occurs when the sex of an organism can be altered during a sensitive period of development due to external factors such as temperature, humidity, or social interactions. Temperature-dependent sex determination (TSD), where the temperature of the embryo's environment influences its sex development, is a widespread non-genetic process of sex determination among vertebrates, including reptiles. All crocodilians, most turtles, many fish, and some lizards exhibit TSD.

Created2013-02-01
173245-Thumbnail Image.png
Description

Published in 1971, Adenocarcinoma of the Vagina: Association of Maternal Stilbestrol Therapy with Tumor Appearance in Young Women, by Arthurs L. Herbst and colleagues, was the first piece of literature connecting maternal use of the drug diethylstilbestrol (DES), also called stilbestrol, with the development of a rare and severe form

Published in 1971, Adenocarcinoma of the Vagina: Association of Maternal Stilbestrol Therapy with Tumor Appearance in Young Women, by Arthurs L. Herbst and colleagues, was the first piece of literature connecting maternal use of the drug diethylstilbestrol (DES), also called stilbestrol, with the development of a rare and severe form of vaginal cancer in young women. Diethylstilbestrol was later classified as an endocrine disruptor, a substance that disrupts the hormonal function of the body in those exposed to it during development or later in life. After Herbst and his team established the connection between DES and the occurrence of breast cancer, cervical cancer, infertility, and reproductive abnormalities, the US federal government banned use the drug for pregnant women. The article was published in the New England Journal of Medicine.

Created2017-04-12
173318-Thumbnail Image.png
Description

Edward Charles Dodds researched the function and effects of natural and artificial hormones on the endocrine system in England during the twentieth century. Though he first worked with hormones such as insulin, Dodds focused on the effects of estrogen in the body and how to replicate those effects with artificial

Edward Charles Dodds researched the function and effects of natural and artificial hormones on the endocrine system in England during the twentieth century. Though he first worked with hormones such as insulin, Dodds focused on the effects of estrogen in the body and how to replicate those effects with artificial substances. In 1938, along with chemist Robert Robinson, Dodds synthesized the first synthetic estrogen called diethylstilbestrol. Despite the wide use of diethylstilbestrol to treat a variety of hormonal problems like miscarriages during pregnancy and menopause, Dodds argued against the use of synthetic substances in the human body due to their unknown effects. Just before Dodds's death, his hypotheses were confirmed when researchers showed that people exposed to diethylstilbestrol often developed cancer. Dodds was one of the first researchers to investigate the endocrine or hormone system in humans, and his research led to the creation of other synthetic hormones used in contraceptive pills and hormone replacements.

Created2017-03-06
173253-Thumbnail Image.png
Description

Scientists use cerebral organoids, which are artificially produced miniature organs that represent embryonic or fetal brains and have many properties similar to them, to help them study developmental disorders like microcephaly. In human embryos, cerebral tissue in the form of neuroectoderm appears within the first nine weeks of human development,

Scientists use cerebral organoids, which are artificially produced miniature organs that represent embryonic or fetal brains and have many properties similar to them, to help them study developmental disorders like microcephaly. In human embryos, cerebral tissue in the form of neuroectoderm appears within the first nine weeks of human development, and it gives rise to the brain and spinal cord. In the twenty-first century, Juergen Knoblich and Madeleine Lancaster at the Institute of Molecular Biotechnology in Vienna, Austria, grew cerebral organoids from pluripotent stem cells as a model to study developmental disorders in embryonic and fetal brains. One such disorder is microcephaly, a condition in which brain size and the number of neurons in the brain are abnormally small. Scientists use cerebral organoids, which they've grown in labs, because they provide a manipulable model for studying how neural cells migrate during development, the timing of neural development, and how genetic errors can result in developmental disorders.

Created2017-05-12
173367-Thumbnail Image.png
Description

William Withey Gull studied paraplegia, anorexia, and hormones as a physician in England during the nineteenth century. In addition to caring for patients, he described the role of the posterior column of the spinal cord in paraplegia, and he was among the first to describe the conditions of anorexia and

William Withey Gull studied paraplegia, anorexia, and hormones as a physician in England during the nineteenth century. In addition to caring for patients, he described the role of the posterior column of the spinal cord in paraplegia, and he was among the first to describe the conditions of anorexia and of hypochondria. He also researched the effects of thyroid hormone deficiencies in women who had malfunctioning thyroid glands. Gull's research on thyroid hormone confirmed that chemicals in the body directly affect health, and he contributed to the foundation of endocrinology, the scientific field for the study of hormones.

Created2017-05-07
173377-Thumbnail Image.png
Description

Charles Raymond Greene studied hormones and the effects of environmental conditions such as high-altitude on physiology in the twentieth century in the United Kingdom. Green researched frostbite and altitude sickness during his mountaineering expeditions, helping to explain how extreme environmental conditions effect respiration. Greene’s research on hormones led to a

Charles Raymond Greene studied hormones and the effects of environmental conditions such as high-altitude on physiology in the twentieth century in the United Kingdom. Green researched frostbite and altitude sickness during his mountaineering expeditions, helping to explain how extreme environmental conditions effect respiration. Greene’s research on hormones led to a collaboration with physician Katarina Dalton that culminated in the development of the theory that progesterone caused premenstrual syndrome, a theory that became the basis for later research on the condition. In his later career Greene formed the Thyroid Club of London that brought together specialists in the emerging field on endocrinology. Greene’s research on progesterone and thyroid helped researchers study how of the endocrine system functions in women’s reproductive health.

Created2017-04-27
173180-Thumbnail Image.png
Description

In 1953, Raymond Greene and Katharina Dalton, who were doctors in the UK, published The Premenstrual Syndrome in the British Medical Journal. In their article, Dalton and Greene established the term premenstrual syndrome (PMS). The authors defined PMS as a cluster of symptoms that include bloating, breast pain, migraine-headache, fatigue,

In 1953, Raymond Greene and Katharina Dalton, who were doctors in the UK, published The Premenstrual Syndrome in the British Medical Journal. In their article, Dalton and Greene established the term premenstrual syndrome (PMS). The authors defined PMS as a cluster of symptoms that include bloating, breast pain, migraine-headache, fatigue, anxiety, depression, and irritability. The article states that the symptoms begin one to two weeks before menstruation during the luteal phase of the menstrual cycle, and they disappear upon the onset of the menstrual period. Menstruation is the monthly series of changes a woman's body undergoes in preparation for the possibility of pregnancy. Dalton and Greene described how progesterone affected women during different phases of their menstrual cycles. The paper convinced many about the phenomenon of PMS, and docotors and scientists adopted Dalton's and Green's term. The paper furthered research about the role of hormones in physiology and of conditions linked to the reproductive system.

Created2017-06-23
173106-Thumbnail Image.png
Description

Karl Landsteiner studied blood types in Europe and in the United States in the late nineteenth and early twentieth centuries. Landsteiner won the Nobel Prize in Physiology or Medicine in 1930 for detailing immunological reactions in the ABO blood group system. The ABO blood group system divides human blood into

Karl Landsteiner studied blood types in Europe and in the United States in the late nineteenth and early twentieth centuries. Landsteiner won the Nobel Prize in Physiology or Medicine in 1930 for detailing immunological reactions in the ABO blood group system. The ABO blood group system divides human blood into one of four types based on the antibodies that are present on each cell. Landsteiner's work with blood types led physicians to safely perform blood transfusions and organ transplants. Additionally, Landsteiner researched the Rh blood factor, a protein marker on the surface of blood cells and that can impact pregnancy.

Created2017-02-17
172734-Thumbnail Image.png
Description

In Australia in the 1940s, Norman McAlister Gregg observed a connection between pregnant women who contracted the rubella virus, or German measles, and cataract formation in their children's eyes. Gregg published his findings in the 1941 article Congenital Cataract following German Measles in the Mother in Transactions of the Ophthalmological

In Australia in the 1940s, Norman McAlister Gregg observed a connection between pregnant women who contracted the rubella virus, or German measles, and cataract formation in their children's eyes. Gregg published his findings in the 1941 article Congenital Cataract following German Measles in the Mother in Transactions of the Ophthalmological Society of Australia. In the article, Gregg analyzed seventy-eight cases of congenital cataracts and suggested that the mothers' environmental factors could cause birth defects, otherwise known as teratogenic effects. Gregg's paper on the teratogenic effects of an environmental agent, the rubella virus, changed the study of birth defects to include viruses as potential causes or teratogens.

Created2013-12-31