This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 13
Filtering by

Clear all filters

173881-Thumbnail Image.png
Description

Plastination is a technique for preserving tissues, organs, and whole bodies for medical purposes and public display. Gunther von Hagens invented a form of the method in 1977 at Heidelberg University in Heidelberg, Germany after observing medical students struggle working with cadavers that quickly decomposed. Von Hagens' body models, referred

Plastination is a technique for preserving tissues, organs, and whole bodies for medical purposes and public display. Gunther von Hagens invented a form of the method in 1977 at Heidelberg University in Heidelberg, Germany after observing medical students struggle working with cadavers that quickly decomposed. Von Hagens' body models, referred to as plastinates, have since become widely used educational tools not only for those studying anatomy and medicine, but also for the general public. The technique has contributed to the fields of medicine, anatomy, and embryology by accurately preserving tissues for use in research and education.

Created2012-10-24
172737-Thumbnail Image.png
Description

Gunther von Hagens invented a plastination technique and created Body Worlds, a traveling exhibit that has made anatomy part of the public domain. Von Hagens invented the plastination technique in 1977 while working at Heidelberg University in Heidelberg, Germany. Von Hagen's plastination technique preserves real bodies and tissues by the

Gunther von Hagens invented a plastination technique and created Body Worlds, a traveling exhibit that has made anatomy part of the public domain. Von Hagens invented the plastination technique in 1977 while working at Heidelberg University in Heidelberg, Germany. Von Hagen's plastination technique preserves real bodies and tissues by the removal of the fluid and replacement with resin. Body Worlds features three-dimensional, plastinated human bodies. As of 2012, the exhibition has given greater than 32 million people worldwide the opportunity to peer inside the human body, something previously available mostly to those in the medical field. Von Hagens and Body Worlds have educated the public and professionals by displaying diseased and healthy specimens. They have contributed to embryology through its displays of human pregnancy, embryos, and fetuses.

Created2012-10-10
173571-Thumbnail Image.png
Description

Frederik Ruysch's cabinet of curiosities, commonly referred to simply as the Cabinet, was a museum Ruysch created in the Netherlands in the late 160ss. The Cabinet filled a series of small houses that Ruysch rented in Amsterdam and contained over 2,000 specimens, including preserved fetuses and infants. The collection remained

Frederik Ruysch's cabinet of curiosities, commonly referred to simply as the Cabinet, was a museum Ruysch created in the Netherlands in the late 160ss. The Cabinet filled a series of small houses that Ruysch rented in Amsterdam and contained over 2,000 specimens, including preserved fetuses and infants. The collection remained in Amsterdam until it was purchased by Tsar Peter the Great of Russia in 1717 and transferred to St. Petersburg, Russia. Similar to Gunther von Hagens' twenty-first century Body Worlds exhibition, which presents bodies preserved through plastination, the Cabinet was open to both medical professionals and laypeople. The pieces in the Cabinet were life-like and aesthetically pleasing, making them valuable education tools for prenatal and infant anatomy as well as an effective way of garnering public interest in anatomy.

Created2013-04-12
172756-Thumbnail Image.png
Description

The Uniform Anatomical Gift Act (UAGA or the Act) was passed in the US in 1968 and has since been revised in 1987 and in 2006. The Act sets a regulatory framework for the donation of organs, tissues, and other human body parts in the US. The UAGA helps regulate

The Uniform Anatomical Gift Act (UAGA or the Act) was passed in the US in 1968 and has since been revised in 1987 and in 2006. The Act sets a regulatory framework for the donation of organs, tissues, and other human body parts in the US. The UAGA helps regulate body donations to science, medicine, and education. The Act has been consulted in discussions about abortion , fetal tissue transplants , and Body Worlds , an anatomy exhibition. The 1968 UAGA set a legislative precedent for the donation of fetal organs and tissues and has been in the background of many debates regarding abortion and fetal tissue research.

Created2013-08-05
172760-Thumbnail Image.png
Description

Body Worlds is an exhibition featuring plastinates, human bodies that have been preserved using a plastination process. First displayed in 1995 in Tokyo, Japan, this collection of anatomical specimens has since been displayed around the world. Although the exhibition debuted in Japan, the idea for the displays began at Heidelberg

Body Worlds is an exhibition featuring plastinates, human bodies that have been preserved using a plastination process. First displayed in 1995 in Tokyo, Japan, this collection of anatomical specimens has since been displayed around the world. Although the exhibition debuted in Japan, the idea for the displays began at Heidelberg University in Heidelberg, Germany, where anatomist Gunther von Hagens invented a technique for plastination in the 1970s. After years of research and small-scale presentations of his work, von Hagens created Body Worlds, or Korperwelten in German. The attraction, which has been viewed by greater than 25 million people, has spread the study of anatomy into the public realm, making it possible for many to see inside an actual human body. Body Worlds has shown plastinated human embryos and fetuses.

Created2012-11-27
172765-Thumbnail Image.png
Description

Eric Wieschaus studied how genes cause fruit fly larvae to develop in the US and Europe during the twentieth and twenty-first centuries. Using the fruit fly Drosophila melanogaster, Wieschaus and colleague Christiane Nusslein-Volhard described genes and gene products that help form the fruit fly body plan and establish the larval

Eric Wieschaus studied how genes cause fruit fly larvae to develop in the US and Europe during the twentieth and twenty-first centuries. Using the fruit fly Drosophila melanogaster, Wieschaus and colleague Christiane Nusslein-Volhard described genes and gene products that help form the fruit fly body plan and establish the larval segments during embryogenesis. This work earned Wieschaus and Nüsslein-Volhard the 1995 Nobel Prize in Physiology or Medicine. Into the early decades of the twenty-first century, Wieschaus continued his thirty year tenure as a professor at Princeton University in Princeton, New Jersey.

Created2014-04-29
173705-Thumbnail Image.png
Description

In 2002 Eric Davidson and his research team published 'A Genomic Regulatory Network for Development' in Science. The authors present the first experimental verification and systemic description of a gene regulatory network. This publication represents the culmination of greater than thirty years of work on gene regulation that began in

In 2002 Eric Davidson and his research team published 'A Genomic Regulatory Network for Development' in Science. The authors present the first experimental verification and systemic description of a gene regulatory network. This publication represents the culmination of greater than thirty years of work on gene regulation that began in 1969 with 'A Gene Regulatory Network for Development: A Theory' by Roy Britten and Davidson. The modeling of a large number of interactions in a gene network had not been achieved before. Furthermore, this model revealed behaviors of the gene networks that could only be observed at the levels of biological organization above that of the gene.

Created2013-10-11
173838-Thumbnail Image.png
Description

Victor Ambros is a professor of molecular medicine at the University of Massachusetts Medical School, and he discovered the first microRNA (miRNA) in 1993. Ambros researched the genetic control of developmental timing in the nematode worm Caenorhabditis elegans and he helped describe gene function and regulation during the worm’s

Victor Ambros is a professor of molecular medicine at the University of Massachusetts Medical School, and he discovered the first microRNA (miRNA) in 1993. Ambros researched the genetic control of developmental timing in the nematode worm Caenorhabditis elegans and he helped describe gene function and regulation during the worm’s development and embryogenesis. His discovery of miRNA marked the beginning of research into a form of genetic regulation found throughout diverse life forms from plants to humans. Ambros is a central figure in the miRNA and C. elegans research communities, and co-directs the RNA Therapeutics Institute.

Created2012-05-13
173654-Thumbnail Image.png
Description

As mice embryos develop, they undergo a stage of development called gastrulation. The hallmark of vertebrate gastrulation is the reorganization of the inner cell mass (ICM) into the three germ layers: ectoderm, mesoderm, and endoderm. Mammalian embryogenesis occurs within organisms; therefore, gastrulation was originally described in species with easily

As mice embryos develop, they undergo a stage of development called gastrulation. The hallmark of vertebrate gastrulation is the reorganization of the inner cell mass (ICM) into the three germ layers: ectoderm, mesoderm, and endoderm. Mammalian embryogenesis occurs within organisms; therefore, gastrulation was originally described in species with easily observable embryos. For example, the African clawed frog (Xenopus laevis) is the most widely used organism to study gastrulation because the large embryos develop inside a translucent membrane. Domestic chicken (Gallus gallus) gastrulation was also an early model organism because researchers could open the egg during development to look inside. Despite the challenges associated with studying mammalian gastrulation, the common house mouse (Mus musculus) has helped to shed light on the unique adaptations associated with mammalian development, and on the subtle differences in structure that give rise to significant divergence in late embryogenesis.

Created2012-10-04
173692-Thumbnail Image.png
Description

Frederik Ruysch made anatomical drawings and collected and preserved human specimens, many of which were infants and fetuses, in the Netherlands during the seventeenth and eighteenth centuries. Ruysch had many interests, including anatomy, botany, and medicine, and he discovered structures of the lymphatic system and of the eye. His collection

Frederik Ruysch made anatomical drawings and collected and preserved human specimens, many of which were infants and fetuses, in the Netherlands during the seventeenth and eighteenth centuries. Ruysch had many interests, including anatomy, botany, and medicine, and he discovered structures of the lymphatic system and of the eye. His collection of preserved human specimens were used as educational tools for his students and for other physicians, and they were displayed in a museum of his own making that was open to the public.

Created2013-04-08