This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 15
Filtering by

Clear all filters

173881-Thumbnail Image.png
Description

Plastination is a technique for preserving tissues, organs, and whole bodies for medical purposes and public display. Gunther von Hagens invented a form of the method in 1977 at Heidelberg University in Heidelberg, Germany after observing medical students struggle working with cadavers that quickly decomposed. Von Hagens' body models, referred

Plastination is a technique for preserving tissues, organs, and whole bodies for medical purposes and public display. Gunther von Hagens invented a form of the method in 1977 at Heidelberg University in Heidelberg, Germany after observing medical students struggle working with cadavers that quickly decomposed. Von Hagens' body models, referred to as plastinates, have since become widely used educational tools not only for those studying anatomy and medicine, but also for the general public. The technique has contributed to the fields of medicine, anatomy, and embryology by accurately preserving tissues for use in research and education.

Created2012-10-24
172735-Thumbnail Image.png
Description

The Sex-determining Region Y (Sry in mammals but SRY in humans) is a gene found on Y chromosomes that leads to the development of male phenotypes, such as testes. The Sry gene, located on the short branch of the Y chromosome, initiates male embryonic development in the XY sex determination

The Sex-determining Region Y (Sry in mammals but SRY in humans) is a gene found on Y chromosomes that leads to the development of male phenotypes, such as testes. The Sry gene, located on the short branch of the Y chromosome, initiates male embryonic development in the XY sex determination system. The Sry gene follows the central dogma of molecular biology; the DNA encoding the gene is transcribed into messenger RNA, which then produces a single Sry protein. The Sry protein is also called the testis-determining factor (TDF), a protein that initiates male development in humans, placental mammals, and marsupials. The Sry protein is a transcription factor that can bind to regions of testis-specific DNA, bending specific DNA and activating or enhancing its abilities to promote testis formation, marking the first step towards male, rather than female, development in the embryo.

Created2013-12-31
172737-Thumbnail Image.png
Description

Gunther von Hagens invented a plastination technique and created Body Worlds, a traveling exhibit that has made anatomy part of the public domain. Von Hagens invented the plastination technique in 1977 while working at Heidelberg University in Heidelberg, Germany. Von Hagen's plastination technique preserves real bodies and tissues by the

Gunther von Hagens invented a plastination technique and created Body Worlds, a traveling exhibit that has made anatomy part of the public domain. Von Hagens invented the plastination technique in 1977 while working at Heidelberg University in Heidelberg, Germany. Von Hagen's plastination technique preserves real bodies and tissues by the removal of the fluid and replacement with resin. Body Worlds features three-dimensional, plastinated human bodies. As of 2012, the exhibition has given greater than 32 million people worldwide the opportunity to peer inside the human body, something previously available mostly to those in the medical field. Von Hagens and Body Worlds have educated the public and professionals by displaying diseased and healthy specimens. They have contributed to embryology through its displays of human pregnancy, embryos, and fetuses.

Created2012-10-10
173571-Thumbnail Image.png
Description

Frederik Ruysch's cabinet of curiosities, commonly referred to simply as the Cabinet, was a museum Ruysch created in the Netherlands in the late 160ss. The Cabinet filled a series of small houses that Ruysch rented in Amsterdam and contained over 2,000 specimens, including preserved fetuses and infants. The collection remained

Frederik Ruysch's cabinet of curiosities, commonly referred to simply as the Cabinet, was a museum Ruysch created in the Netherlands in the late 160ss. The Cabinet filled a series of small houses that Ruysch rented in Amsterdam and contained over 2,000 specimens, including preserved fetuses and infants. The collection remained in Amsterdam until it was purchased by Tsar Peter the Great of Russia in 1717 and transferred to St. Petersburg, Russia. Similar to Gunther von Hagens' twenty-first century Body Worlds exhibition, which presents bodies preserved through plastination, the Cabinet was open to both medical professionals and laypeople. The pieces in the Cabinet were life-like and aesthetically pleasing, making them valuable education tools for prenatal and infant anatomy as well as an effective way of garnering public interest in anatomy.

Created2013-04-12
172814-Thumbnail Image.png
Description

Studies in Spermatogenesis is a two volume book written by Nettie Maria Stevens, and published by the Carnegie Institution of Washington in 1905 and 1906. In the books Stevens explains the research she conducted on chromosomal sex determination in the sperm and egg cells of insect species while at Bryn

Studies in Spermatogenesis is a two volume book written by Nettie Maria Stevens, and published by the Carnegie Institution of Washington in 1905 and 1906. In the books Stevens explains the research she conducted on chromosomal sex determination in the sperm and egg cells of insect species while at Bryn Mawr College, near Philadelphia, Pennsylvania. Studies in Spermatogenesis described early examples of chromosomal XY sex-determination.

Created2014-01-22
172855-Thumbnail Image.png
Description

By 2011, researchers in the US had established that non-invasive blood tests can accurately determine the gender of a human fetus as early as seven weeks after fertilization. Experts predicted that this ability may encourage the use of prenatal sex screening tests by women interested to know the gender of

By 2011, researchers in the US had established that non-invasive blood tests can accurately determine the gender of a human fetus as early as seven weeks after fertilization. Experts predicted that this ability may encourage the use of prenatal sex screening tests by women interested to know the gender of their fetuses. As more people begin to use non-invasive blood tests that accurately determine the sex of the fetus at 7 weeks, many ethical questions pertaining to regulation, the consequences of gender-imbalanced societies, and altered meanings of the parent-child relationship.

Created2014-03-23
172889-Thumbnail Image.png
Description

Ethical Issues in Human Stem Cell Research: Executive Summary was published in September 1999 by The US National Bioethics Advisory Commission in response to a national debate about whether or not the US federal government should fund embryonic stem cell research. Ethical Issues in Human Stem Cell Research recommended

Ethical Issues in Human Stem Cell Research: Executive Summary was published in September 1999 by The US National Bioethics Advisory Commission in response to a national debate about whether or not the US federal government should fund embryonic stem cell research. Ethical Issues in Human Stem Cell Research recommended policy to US President William Clinton's administration, which advocated for federal spending on the use of stem research on stem cells that came from embryos left over from in vitro fertilization (IVF) fertility treatments. Although NBAC's proposals never became legislation, the report helped shape public, private, and international discourse on stem cell research policy.

Created2014-04-01
172756-Thumbnail Image.png
Description

The Uniform Anatomical Gift Act (UAGA or the Act) was passed in the US in 1968 and has since been revised in 1987 and in 2006. The Act sets a regulatory framework for the donation of organs, tissues, and other human body parts in the US. The UAGA helps regulate

The Uniform Anatomical Gift Act (UAGA or the Act) was passed in the US in 1968 and has since been revised in 1987 and in 2006. The Act sets a regulatory framework for the donation of organs, tissues, and other human body parts in the US. The UAGA helps regulate body donations to science, medicine, and education. The Act has been consulted in discussions about abortion , fetal tissue transplants , and Body Worlds , an anatomy exhibition. The 1968 UAGA set a legislative precedent for the donation of fetal organs and tissues and has been in the background of many debates regarding abortion and fetal tissue research.

Created2013-08-05
172760-Thumbnail Image.png
Description

Body Worlds is an exhibition featuring plastinates, human bodies that have been preserved using a plastination process. First displayed in 1995 in Tokyo, Japan, this collection of anatomical specimens has since been displayed around the world. Although the exhibition debuted in Japan, the idea for the displays began at Heidelberg

Body Worlds is an exhibition featuring plastinates, human bodies that have been preserved using a plastination process. First displayed in 1995 in Tokyo, Japan, this collection of anatomical specimens has since been displayed around the world. Although the exhibition debuted in Japan, the idea for the displays began at Heidelberg University in Heidelberg, Germany, where anatomist Gunther von Hagens invented a technique for plastination in the 1970s. After years of research and small-scale presentations of his work, von Hagens created Body Worlds, or Korperwelten in German. The attraction, which has been viewed by greater than 25 million people, has spread the study of anatomy into the public realm, making it possible for many to see inside an actual human body. Body Worlds has shown plastinated human embryos and fetuses.

Created2012-11-27
172683-Thumbnail Image.png
Description

In the late 1980s, Peter Goodfellow in London, UK led a team of researchers who showed that the SRY gene in humans codes a protein that causes testes to develop in embryos. During this time, scientists in London and Paris, including Peter Koompan and John Gubbay, proposed that SRY was

In the late 1980s, Peter Goodfellow in London, UK led a team of researchers who showed that the SRY gene in humans codes a protein that causes testes to develop in embryos. During this time, scientists in London and Paris, including Peter Koompan and John Gubbay, proposed that SRY was the gene on the Y chromosome responsible for encoding the testis-determining factor (TDF) protein. The TDF is a protein that initiates embryo to develop male characteristics. Looking for evidence that SRY was the TDF, Goodfellow and colleagues examined people who were anatomically female, but whose cells had Y chromosomes. Females normally have cells with two X sex chromosomes (XX), while males normally have cells with one X and one Y chromosome (XY). Goodfellow's team discovered that individuals with Y chromosomes developed as female instead of as male due to inactive SRY sequences on the Y chromosome. Goodfellow and colleagues compiled the results of their experiment in a paper titled Genetic Evidence Equating SRY and the Testis-Determining Factor in 1990. Their results showed that the SRY gene is necessary for male characteristics to develop in embryos, and that SRY encodes the TDF protein.

Created2014-01-10