This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 21
Filtering by

Clear all filters

173931-Thumbnail Image.png
Description

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of cells transforms into a two-layered embryo made of an inner layer of endoderm and an outer layer of ectoderm. In more complex organisms, like vertebrates, these two primary germ layers interact to give rise to a third germ layer, called mesoderm. Regardless of the presence of two or three layers, endoderm is always the inner-most layer. Endoderm forms the epithelium-- a type of tissue in which the cells are tightly linked together to form sheets-- that lines the primitive gut. From this epithelial lining of the primitive gut, organs like the digestive tract, liver, pancreas, and lungs develop.

Created2013-11-17
173932-Thumbnail Image.png
Description

The sex of a reptile embryo partly results from the production of sex hormones during development, and one process to produce those hormones depends on the temperature of the embryo's environment. The production of sex hormones can result solely from genetics or from genetics in combination with the influence of

The sex of a reptile embryo partly results from the production of sex hormones during development, and one process to produce those hormones depends on the temperature of the embryo's environment. The production of sex hormones can result solely from genetics or from genetics in combination with the influence of environmental factors. In genotypic sex determination, also called genetic or chromosomal sex determination, an organism's genes determine which hormones are produced. Non-genetic sex determination occurs when the sex of an organism can be altered during a sensitive period of development due to external factors such as temperature, humidity, or social interactions. Temperature-dependent sex determination (TSD), where the temperature of the embryo's environment influences its sex development, is a widespread non-genetic process of sex determination among vertebrates, including reptiles. All crocodilians, most turtles, many fish, and some lizards exhibit TSD.

Created2013-02-01
173881-Thumbnail Image.png
Description

Plastination is a technique for preserving tissues, organs, and whole bodies for medical purposes and public display. Gunther von Hagens invented a form of the method in 1977 at Heidelberg University in Heidelberg, Germany after observing medical students struggle working with cadavers that quickly decomposed. Von Hagens' body models, referred

Plastination is a technique for preserving tissues, organs, and whole bodies for medical purposes and public display. Gunther von Hagens invented a form of the method in 1977 at Heidelberg University in Heidelberg, Germany after observing medical students struggle working with cadavers that quickly decomposed. Von Hagens' body models, referred to as plastinates, have since become widely used educational tools not only for those studying anatomy and medicine, but also for the general public. The technique has contributed to the fields of medicine, anatomy, and embryology by accurately preserving tissues for use in research and education.

Created2012-10-24
172734-Thumbnail Image.png
Description

In Australia in the 1940s, Norman McAlister Gregg observed a connection between pregnant women who contracted the rubella virus, or German measles, and cataract formation in their children's eyes. Gregg published his findings in the 1941 article Congenital Cataract following German Measles in the Mother in Transactions of the Ophthalmological

In Australia in the 1940s, Norman McAlister Gregg observed a connection between pregnant women who contracted the rubella virus, or German measles, and cataract formation in their children's eyes. Gregg published his findings in the 1941 article Congenital Cataract following German Measles in the Mother in Transactions of the Ophthalmological Society of Australia. In the article, Gregg analyzed seventy-eight cases of congenital cataracts and suggested that the mothers' environmental factors could cause birth defects, otherwise known as teratogenic effects. Gregg's paper on the teratogenic effects of an environmental agent, the rubella virus, changed the study of birth defects to include viruses as potential causes or teratogens.

Created2013-12-31
172737-Thumbnail Image.png
Description

Gunther von Hagens invented a plastination technique and created Body Worlds, a traveling exhibit that has made anatomy part of the public domain. Von Hagens invented the plastination technique in 1977 while working at Heidelberg University in Heidelberg, Germany. Von Hagen's plastination technique preserves real bodies and tissues by the

Gunther von Hagens invented a plastination technique and created Body Worlds, a traveling exhibit that has made anatomy part of the public domain. Von Hagens invented the plastination technique in 1977 while working at Heidelberg University in Heidelberg, Germany. Von Hagen's plastination technique preserves real bodies and tissues by the removal of the fluid and replacement with resin. Body Worlds features three-dimensional, plastinated human bodies. As of 2012, the exhibition has given greater than 32 million people worldwide the opportunity to peer inside the human body, something previously available mostly to those in the medical field. Von Hagens and Body Worlds have educated the public and professionals by displaying diseased and healthy specimens. They have contributed to embryology through its displays of human pregnancy, embryos, and fetuses.

Created2012-10-10
172753-Thumbnail Image.png
Description

Solomon A. Berson helped develop the radioimmunoassay (RIA) technique in the US during the twentieth century. Berson made many scientific contributions while working with research partner Rosalyn Yalow at the Bronx Veterans Administration (VA) hospital, in New York City, New York. In the more than twenty years that Berson and

Solomon A. Berson helped develop the radioimmunoassay (RIA) technique in the US during the twentieth century. Berson made many scientific contributions while working with research partner Rosalyn Yalow at the Bronx Veterans Administration (VA) hospital, in New York City, New York. In the more than twenty years that Berson and Yalow collaborated, they refined the procedures for tracing diagnostic biological compounds using isotope labels. In the late 1950s they developed the RIA based on the ability to trace the competition between and ligands, or small molecules that bind to specific sites of other biomolecules, and proteins for the same molecular binding site, a process called competitive binding. Scientists widely used Berson and Yalow's RIA, as these methods permit the use of a minimal sample of blood for accurate measurements of biological molecules such as hormones that cause the production of antibodies. Berson and Yalow's research has advanced the study of physiology, including that of the reproductive system, with particular applications to the diagnosis and treatment of infertility.

Created2013-11-01
173571-Thumbnail Image.png
Description

Frederik Ruysch's cabinet of curiosities, commonly referred to simply as the Cabinet, was a museum Ruysch created in the Netherlands in the late 160ss. The Cabinet filled a series of small houses that Ruysch rented in Amsterdam and contained over 2,000 specimens, including preserved fetuses and infants. The collection remained

Frederik Ruysch's cabinet of curiosities, commonly referred to simply as the Cabinet, was a museum Ruysch created in the Netherlands in the late 160ss. The Cabinet filled a series of small houses that Ruysch rented in Amsterdam and contained over 2,000 specimens, including preserved fetuses and infants. The collection remained in Amsterdam until it was purchased by Tsar Peter the Great of Russia in 1717 and transferred to St. Petersburg, Russia. Similar to Gunther von Hagens' twenty-first century Body Worlds exhibition, which presents bodies preserved through plastination, the Cabinet was open to both medical professionals and laypeople. The pieces in the Cabinet were life-like and aesthetically pleasing, making them valuable education tools for prenatal and infant anatomy as well as an effective way of garnering public interest in anatomy.

Created2013-04-12
Description

Advanced Cell Technology (ACT), a stem cell biotechnology company in Worcester, Massachusetts, showed the potential for cloning to contribute to conservation efforts. In 2000 ACT researchers in the United States cloned a gaur (Bos gaurus), an Asian ox with a then declining wild population. The researchers used cryopreserved gaur skin

Advanced Cell Technology (ACT), a stem cell biotechnology company in Worcester, Massachusetts, showed the potential for cloning to contribute to conservation efforts. In 2000 ACT researchers in the United States cloned a gaur (Bos gaurus), an Asian ox with a then declining wild population. The researchers used cryopreserved gaur skin cells combined with an embryo of a domestic cow (Bos taurus). A domestic cow also served as the surrogate for the developing gaur clone. The successful procedure opened the opportunity to clone individuals from species for which there are few or zero live specimens. The official release of this experiment's data was published in the paper 'Cloning of an Endangered Species (Bos gaurus) Using Interspecies Nuclear Transfer,' in October 2000. In the article, the researchers presented data collected from several cloned fetuses that were aborted before the full term of 283 days. At the time of publication, the gaur bull fetus, named Noah at birth, had developed for greater than 180 days. Noah was born on 8 January 2001, but died two days later due to dysentery. The development, birth, and death of Noah became a platform for conservationists and ethicists to critique the role of cloning in society and as a method to conserve species.

Created2013-07-26
172809-Thumbnail Image.png
Description

At the turn of the twentieth century, William Bateson studied organismal variation and heredity of traits within the framework of evolutionary theory in England. Bateson applied Gregor Mendel's work to Charles Darwin's theory of evolution and coined the term genetics for a new biological discipline. By studying variation and advocating

At the turn of the twentieth century, William Bateson studied organismal variation and heredity of traits within the framework of evolutionary theory in England. Bateson applied Gregor Mendel's work to Charles Darwin's theory of evolution and coined the term genetics for a new biological discipline. By studying variation and advocating Mendelian genetics, Bateson furthered the field of genetics, encouraged the use of experimental methodology to study heredity, and contributed to later theories of genetic inheritance.

Created2014-01-28
172813-Thumbnail Image.png
Description

In eighteenth century Germany, Johann Friedrich Blumenbach studied how individuals within a species vary, and to explain such variations, he proposed that a force operates on organisms as they develop. Blumenbach used metrical methods to study the history of humans, but he was also a natural historian and theorist. Blumenbach

In eighteenth century Germany, Johann Friedrich Blumenbach studied how individuals within a species vary, and to explain such variations, he proposed that a force operates on organisms as they develop. Blumenbach used metrical methods to study the history of humans, but he was also a natural historian and theorist. Blumenbach argued for theories of the transformation of species, or the claim that new species can develop from existing forms. His theory of Bildungstrieb (formative drive), a developmental force within all organisms, influenced the conceptual debates among many late nineteenth and early twentieth century embryologists and naturalists.

Created2014-01-22