This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 64
Filtering by

Clear all filters

173881-Thumbnail Image.png
Description

Plastination is a technique for preserving tissues, organs, and whole bodies for medical purposes and public display. Gunther von Hagens invented a form of the method in 1977 at Heidelberg University in Heidelberg, Germany after observing medical students struggle working with cadavers that quickly decomposed. Von Hagens' body models, referred

Plastination is a technique for preserving tissues, organs, and whole bodies for medical purposes and public display. Gunther von Hagens invented a form of the method in 1977 at Heidelberg University in Heidelberg, Germany after observing medical students struggle working with cadavers that quickly decomposed. Von Hagens' body models, referred to as plastinates, have since become widely used educational tools not only for those studying anatomy and medicine, but also for the general public. The technique has contributed to the fields of medicine, anatomy, and embryology by accurately preserving tissues for use in research and education.

Created2012-10-24
173892-Thumbnail Image.png
Description

The principal work of St. Thomas Aquinas, the Summa Theologica is divided into three parts and is designed to instruct both beginners and experts in all matters of Christian Truth. It discusses topics central to Christian morality, ethics, law, and the life of Christ, providing philosophical and theological solutions to

The principal work of St. Thomas Aquinas, the Summa Theologica is divided into three parts and is designed to instruct both beginners and experts in all matters of Christian Truth. It discusses topics central to Christian morality, ethics, law, and the life of Christ, providing philosophical and theological solutions to common arguments and questions surrounding the Christian faith. The views presented in this body of writing are currently upheld in large part by the modern doctrines of the Roman Catholic Church. Interesting references to and insights on ensoulment and embryology, as well as other topics discussed in Summa Theologica, indicate a strong Aristotelian and Augustinian influence.

Created2007-11-11
173911-Thumbnail Image.png
Description

As the third director of the Carnegie Institute of Washington s Department of Embryology, George Washington Corner made a number of contributions to the life sciences as well as to administration. Corner was born on 12 December 1889 in Baltimore, Maryland, near the newly established Johns Hopkins University. Although Corner

As the third director of the Carnegie Institute of Washington s Department of Embryology, George Washington Corner made a number of contributions to the life sciences as well as to administration. Corner was born on 12 December 1889 in Baltimore, Maryland, near the newly established Johns Hopkins University. Although Corner was not exposed to science much in school at a young age, he developed an early appreciation for science through conversations with his father about geography and by looking through the family's National Geographic magazines.

Created2007-11-01
173912-Thumbnail Image.png
Description

Stanley Cohen is a biochemist who participated in the discovery of nerve growth factor (NGF) and epidermal growth factor (EGF). He shared the 1986 Nobel Prize in Physiology or Medicine with Rita Levi-Montalcini for their work on the discovery of growth factors. His work led to the discovery of many

Stanley Cohen is a biochemist who participated in the discovery of nerve growth factor (NGF) and epidermal growth factor (EGF). He shared the 1986 Nobel Prize in Physiology or Medicine with Rita Levi-Montalcini for their work on the discovery of growth factors. His work led to the discovery of many other growth factors and their roles in development.

Created2007-11-01
173913-Thumbnail Image.png
Description

Karl Wilhelm Theodor Richard von Hertwig is an important figure in the history of embryology for his contributions of artificial hybridization of sea urchin eggs and the formulation of his coelom theory. He was born 23 September 1850 in Friedelberg, Germany, to Elise Trapp and Carl Hertwig. Richard and his

Karl Wilhelm Theodor Richard von Hertwig is an important figure in the history of embryology for his contributions of artificial hybridization of sea urchin eggs and the formulation of his coelom theory. He was born 23 September 1850 in Friedelberg, Germany, to Elise Trapp and Carl Hertwig. Richard and his older brother Oscar began their studies at Jena under the direction of Ernst Haeckel from 1868 to 1871. In 1872 Hertwig became a lecturer in zoology at Jena while Oscar lectured in anatomy and embryology. As both brothers advanced in their respective fields, Hertwig left Jena to become a professor at Königsberg. In 1883 he was professor at Bonn and in 1885 in Munich, where he stayed until his retirement in 1925. Hertwig married Julia Braun in 1887 and had two sons and one daughter. He remained very active his entire life, outliving his brother Oscar by fifteen years.

Created2007-11-01
173920-Thumbnail Image.png
Description

Libbie Henrietta Hyman was born into a recently immigrated Jewish family on 6 December 1888 in Des Moines, Iowa. One of many siblings and daughter to parents Sabina Neumann and Joseph Hyman, who did not particularly support her interests in science, Hyman excelled in school and indulged her interests in

Libbie Henrietta Hyman was born into a recently immigrated Jewish family on 6 December 1888 in Des Moines, Iowa. One of many siblings and daughter to parents Sabina Neumann and Joseph Hyman, who did not particularly support her interests in science, Hyman excelled in school and indulged her interests in biology in her free time. From a young age, Hyman collected and cataloged flora around her home. Despite being valedictorian of her high school class, Hyman's first job was labeling cereal boxes in a local factory. It was only when a former teacher became aware of Hyman's situation that Hyman was prompted to apply for college scholarships.

Created2007-11-01
173191-Thumbnail Image.png
Description

Franklin Paine Mall was born into a farming family in Belle Plaine, Iowa, on 28 September 1862. While he attended a local academy, an influential teacher fueled Mall's interest in science. From 1880-1883, he studied medicine at the University of Michigan, attaining his MD degree in 1883. William J. Mayo,

Franklin Paine Mall was born into a farming family in Belle Plaine, Iowa, on 28 September 1862. While he attended a local academy, an influential teacher fueled Mall's interest in science. From 1880-1883, he studied medicine at the University of Michigan, attaining his MD degree in 1883. William J. Mayo, who later became a famous surgeon and co-founder of the Mayo Clinic in Rochester, Minnesota, was a classmate of Mall's. Throughout his studies at Michigan, he was influenced by Corydon L. Ford, a professor of anatomy, Victor C. Vaughn, a biochemist and bacteriologist, and Henry Sewall, a physiologist.

Created2007-11-01
172737-Thumbnail Image.png
Description

Gunther von Hagens invented a plastination technique and created Body Worlds, a traveling exhibit that has made anatomy part of the public domain. Von Hagens invented the plastination technique in 1977 while working at Heidelberg University in Heidelberg, Germany. Von Hagen's plastination technique preserves real bodies and tissues by the

Gunther von Hagens invented a plastination technique and created Body Worlds, a traveling exhibit that has made anatomy part of the public domain. Von Hagens invented the plastination technique in 1977 while working at Heidelberg University in Heidelberg, Germany. Von Hagen's plastination technique preserves real bodies and tissues by the removal of the fluid and replacement with resin. Body Worlds features three-dimensional, plastinated human bodies. As of 2012, the exhibition has given greater than 32 million people worldwide the opportunity to peer inside the human body, something previously available mostly to those in the medical field. Von Hagens and Body Worlds have educated the public and professionals by displaying diseased and healthy specimens. They have contributed to embryology through its displays of human pregnancy, embryos, and fetuses.

Created2012-10-10
172754-Thumbnail Image.png
Description

Edmund Beecher Wilson contributed to cell biology, the study of cells, in the US during the end of the nineteenth and the beginning of the twentieth centuries. His three editions of The Cell in Development and Inheritance (or Heredity) in 1896, 1900, and 1925 introduced generations of students to cell

Edmund Beecher Wilson contributed to cell biology, the study of cells, in the US during the end of the nineteenth and the beginning of the twentieth centuries. His three editions of The Cell in Development and Inheritance (or Heredity) in 1896, 1900, and 1925 introduced generations of students to cell biology. In The Cell, Wilson described the evidence and theories of his time about cells and identified topics for future study. He helped show how each part of the cell works during cell division and in every step of early development of an organism. Developmental biologists trained in the mid-twentieth century reported WilsonÕs text as their foundation for understanding biology, including about how cells, development, heredity, and evolution interact. Wilson considered cells as the center of all biological phenomena.

Created2013-08-05
173571-Thumbnail Image.png
Description

Frederik Ruysch's cabinet of curiosities, commonly referred to simply as the Cabinet, was a museum Ruysch created in the Netherlands in the late 160ss. The Cabinet filled a series of small houses that Ruysch rented in Amsterdam and contained over 2,000 specimens, including preserved fetuses and infants. The collection remained

Frederik Ruysch's cabinet of curiosities, commonly referred to simply as the Cabinet, was a museum Ruysch created in the Netherlands in the late 160ss. The Cabinet filled a series of small houses that Ruysch rented in Amsterdam and contained over 2,000 specimens, including preserved fetuses and infants. The collection remained in Amsterdam until it was purchased by Tsar Peter the Great of Russia in 1717 and transferred to St. Petersburg, Russia. Similar to Gunther von Hagens' twenty-first century Body Worlds exhibition, which presents bodies preserved through plastination, the Cabinet was open to both medical professionals and laypeople. The pieces in the Cabinet were life-like and aesthetically pleasing, making them valuable education tools for prenatal and infant anatomy as well as an effective way of garnering public interest in anatomy.

Created2013-04-12