This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 18
Filtering by

Clear all filters

173310-Thumbnail Image.png
Description

Acid dissolution is a technique of removing a fossil from the surrounding rock matrix in which it is encased by dissolving that matrix with acid. Fossilized bone, though strong enough to be preserved for thousands or millions of years, is often more delicate than rock. Once a fossil is discovered,

Acid dissolution is a technique of removing a fossil from the surrounding rock matrix in which it is encased by dissolving that matrix with acid. Fossilized bone, though strong enough to be preserved for thousands or millions of years, is often more delicate than rock. Once a fossil is discovered, scientists must remove the fossil from its surroundings without damaging the fossil itself. Scientists have used chemicals to expose vertebrate fossils since the 1930s, and in the late 1990s Terry Manning, an amateur scientist and technician working in England, adapted the technology to dinosaur eggs. Manning used acid dissolution on dinosaur eggs to expose the embryos beneath the rock and fossil shell. Manning's acid dissolution enabled scientists to better study the remains of dinosaur embryos otherwise hidden beneath layers of eggshell and rock, revealing previously unrecorded aspects of dinosaur growth and development.

Created2017-02-11
173431-Thumbnail Image.png
Description

Boris Ephrussi and George Wells Beadle developed a transplantation technique on flies, Drosophila melanogaster, which they described in their 1936 article A Technique of Transplantation for Drosophila. The technique of injecting a tissue from one fly larva into another fly larva, using a micropipette, to grow that tissue in the

Boris Ephrussi and George Wells Beadle developed a transplantation technique on flies, Drosophila melanogaster, which they described in their 1936 article A Technique of Transplantation for Drosophila. The technique of injecting a tissue from one fly larva into another fly larva, using a micropipette, to grow that tissue in the second larvae, was a means for investigating development of Drosophila. Through this technique, Beadle and Ephrussi studied the role of genes in embryological processes. Beadle and Ephrussi were the first to apply the transplantation method, which had previously been used in the study of larger insects, to the smaller sized Drosophila. Beadle and Ephrussi used this method of transplantation to determine if parts of the optic disc, the section of a larvae that later become the eye buds in the adult, could be extracted from one larva and transplanted into another. They later built upon this research to relate the production of molecules in cells to gene function.

Created2014-06-29
172823-Thumbnail Image.png
Description

When scientists discovered a 3.3
million-year-old skeleton of a child of the human lineage (hominin) in
2000, in the village of Hadar, Ethiopia, they were able to study growth
and development of Australopithecus
afarensis, an extinct hominin species. The team of researchers,
led by Zeresenay Alemseged of the Max Planck

When scientists discovered a 3.3
million-year-old skeleton of a child of the human lineage (hominin) in
2000, in the village of Hadar, Ethiopia, they were able to study growth
and development of Australopithecus
afarensis, an extinct hominin species. The team of researchers,
led by Zeresenay Alemseged of the Max Planck Institute for Evolutionary
Anthropology in Leipzig, Germany, named the fossil DIK 1-1 and nicknamed
it Dikika baby after the Dikika research site. The Dikika fossil
preserves much of the skull, including the jaw and teeth, which enabled
scientists to study the teeth microstructures and to reconstruct the
pace at which individuals of the hominin A. afarensis
developed.

Created2015-02-02
Description

The Edinburgh Mouse Atlas, also called the e-Mouse Atlas Project (EMAP), is an online resource comprised of the e-Mouse Atlas (EMA), a detailed digital model of mouse development, and the e-Mouse Atlas of Gene Expression (EMAGE), a database that identifies sites of gene expression in mouse embryos. Duncan Davidson and

The Edinburgh Mouse Atlas, also called the e-Mouse Atlas Project (EMAP), is an online resource comprised of the e-Mouse Atlas (EMA), a detailed digital model of mouse development, and the e-Mouse Atlas of Gene Expression (EMAGE), a database that identifies sites of gene expression in mouse embryos. Duncan Davidson and Richard Baldock founded the project in 1992, and the Medical Research Council (MRC) in Edinburgh, United Kingdom, funds the project. Davidson and Baldock announced the project in an article titled A Real Mouse for Your Computer, citing the need to manage and analyze the volume of data that overwhelmed developmental biologists. Though EMAP resources were distributed via CD-ROM in the early years, the project moved increasingly online by the early 2000s, and into the early decades of the twenty-first century, was in active development. EMAP can be utilized as a developmental biology teaching resource and as a research tool that enables scientists to explore annotated 3D virtual mouse embryos. EMAP's goal is to illuminate the molecular basis of tissue differentiation.

Created2014-06-11
172816-Thumbnail Image.png
Description

James William Kitching collected and studied fossils of dinosaurs and early humans in the twentieth century. He worked at the Bernard Price Institute for Paleontological Research in South Africa. During the fifty-three years he worked at the institute, Kitching spent eighteen of those in the field uncovering fossils. Kitching recovered

James William Kitching collected and studied fossils of dinosaurs and early humans in the twentieth century. He worked at the Bernard Price Institute for Paleontological Research in South Africa. During the fifty-three years he worked at the institute, Kitching spent eighteen of those in the field uncovering fossils. Kitching recovered fossils of early human ancestors, later called Australopithecines, as well as fossils of dinosaurs and ancient mammals. When he died in 2003, the Bernard Price Institute housed one of the largest fossil collections in the southern hemisphere. Kitching and his team had collected most of those fossils. Additionally, he helped discover Massospondylus embryos, the first dinosaur embryos ever recovered, which enabled scientists to examine dinosaurs before birth.

Created2015-03-31
172824-Thumbnail Image.png
Description

Dinosaur egg parataxonomy is a classification system that organizes dinosaur eggs by descriptive features such as shape, size, and shell thickness. Though egg parataxonomy originated in the nineteenth century, Zi-Kui Zhao from Beijing, China, developed a modern parataxonomic system in the late twentieth century. Zhao's system, published in 1975, enabled

Dinosaur egg parataxonomy is a classification system that organizes dinosaur eggs by descriptive features such as shape, size, and shell thickness. Though egg parataxonomy originated in the nineteenth century, Zi-Kui Zhao from Beijing, China, developed a modern parataxonomic system in the late twentieth century. Zhao's system, published in 1975, enabled scientists to organize egg specimens according to observable features, and to communicate their findings. The eggshell protects the developing embryo, enables gas exchange between the embryo and the environment external to the egg, and the internal components of the egg provide nutrients for the embryo. Those external and internal features that support a developing embryo leave their mark on eggshells. Dinosaur egg parataxonomy classifies those characteristics and provides insight into dinosaur egg-laying behaviors, reproductive physiology, and embryonic development.

Created2015-03-23
Description

George Wells Beadle and Edward Lawrie Tatum's 1941 article Genetic Control of Biochemical Reactions in Neurospora detailed their experiments on how genes regulated chemical reactions, and how the chemical reactions in turn affected development in the organism. Beadle and Tatum experimented on Neurospora, a type of bread mold, and they

George Wells Beadle and Edward Lawrie Tatum's 1941 article Genetic Control of Biochemical Reactions in Neurospora detailed their experiments on how genes regulated chemical reactions, and how the chemical reactions in turn affected development in the organism. Beadle and Tatum experimented on Neurospora, a type of bread mold, and they concluded that mutations to genes affected the enzymes of organisms, a result that biologists later generalized to proteins, not just enzymes. Beadle and Tatum's experiments provided an early link between genetics and the field of molecular biology.

Created2014-06-11
172861-Thumbnail Image.png
Description

Friedrich Tiedemann studied the anatomy of humans and animals in the nineteenth century in Germany. He published on zoological subjects, on the heart of fish, the anatomy of amphibians and echinoderms, and the lymphatic and respiratory system in birds. In addition to his zoological anatomy, Tiedemann, working with the chemist

Friedrich Tiedemann studied the anatomy of humans and animals in the nineteenth century in Germany. He published on zoological subjects, on the heart of fish, the anatomy of amphibians and echinoderms, and the lymphatic and respiratory system in birds. In addition to his zoological anatomy, Tiedemann, working with the chemist Leopold Gmelin, published about how the digestive system functioned. Towards the end of his career Tiedemann published a comparative anatomy of the brains of white Europeans, black Africans, and Orangutans, in which he argued that there were no appreciable differences between the structure of the brains of blacks, women, and white European men that would suggest they were intellectually different. Tiedemann also researched the embryonic development of the brain and circulatory systems of human fetuses.

Created2015-07-07
172872-Thumbnail Image.png
Description

Roy John Britten studied DNA sequences in the US in the second
half of the twentieth century, and he helped discover repetitive
elements in DNA sequences. Additionally, Britten helped propose
models and concepts of gene regulatory networks. Britten studied the
organization of repetitive elements and, analyzing

Roy John Britten studied DNA sequences in the US in the second
half of the twentieth century, and he helped discover repetitive
elements in DNA sequences. Additionally, Britten helped propose
models and concepts of gene regulatory networks. Britten studied the
organization of repetitive elements and, analyzing data from the
Human Genome Project, he found that the repetitive elements in DNA
segments do not code for proteins, enzymes, or cellular parts.
Britten hypothesized that repetitive elements helped cause cells to
differentiate into more specific cell kinds among different
organisms.

Created2014-10-24
172912-Thumbnail Image.png
Description

Roy Chapman Andrews traveled the world studying fossils, from mammals to dinosaurs, during the first half of the twentieth century. Andrews worked and collected fossil specimens for the American Museum of Natural History (AMNH) in New York City, New York. Throughout his career, Andrews collected bones of many animal species,

Roy Chapman Andrews traveled the world studying fossils, from mammals to dinosaurs, during the first half of the twentieth century. Andrews worked and collected fossil specimens for the American Museum of Natural History (AMNH) in New York City, New York. Throughout his career, Andrews collected bones of many animal species, including a previously unknown species of a horned, herbivorous dinosaur, later named Proceratops andrewsi in his honor. Andrews published widely read narratives about his travels and field experiences, such as On the Trail of Ancient Man and Across Mongolian Plains. Andrews led expeditions for the Central Asiatic Expeditions in the Gobi Desert, which recovered many previously unknown fossil specimens. His Central Asiatic team discovered the first scientifically recognized dinosaur eggs, which provided scientists with information about the eggs that dinosaurs produced.

Created2015-01-22