This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 19
Filtering by

Clear all filters

173888-Thumbnail Image.png
Description

"Induction and Patterning of the Primitive Streak, an Organizing Center of Gastrulation in the Amniote," (hereafter referred to as "Induction") examines the mechanisms underlying early amniote gastrulation and the formation of the primitive streak and midline axis. The review, authored by Takashi Mikawa and colleagues at Cornell University Medical College,

"Induction and Patterning of the Primitive Streak, an Organizing Center of Gastrulation in the Amniote," (hereafter referred to as "Induction") examines the mechanisms underlying early amniote gastrulation and the formation of the primitive streak and midline axis. The review, authored by Takashi Mikawa and colleagues at Cornell University Medical College, was published in Developmental Dynamics in 2004. The article primarily discusses chick embryos as a model organism for nonrodent amniote gastrulation, although it intermittently touches on nonamniote gastrulation for comparative purposes. "Induction" attempts to explain the initiation of cell differentiation and embryo organization, one of the most intriguing processes of embryology.

Created2011-04-14
Description

Meiosis, the process by which sexually-reproducing organisms generate gametes (sex cells), is an essential precondition for the normal formation of the embryo. As sexually reproducing, diploid, multicellular eukaryotes, humans rely on meiosis to serve a number of important functions, including the promotion of genetic diversity and the creation of proper

Meiosis, the process by which sexually-reproducing organisms generate gametes (sex cells), is an essential precondition for the normal formation of the embryo. As sexually reproducing, diploid, multicellular eukaryotes, humans rely on meiosis to serve a number of important functions, including the promotion of genetic diversity and the creation of proper conditions for reproductive success. However, the primary function of meiosis is the reduction of the ploidy (number of chromosomes) of the gametes from diploid (2n, or two sets of 23 chromosomes) to haploid (1n or one set of 23 chromosomes). While parts of meiosis are similar to mitotic processes, the two systems of cellular division produce distinctly different outcomes. Problems during meiosis can stop embryonic development and sometimes cause spontaneous miscarriages, genetic errors, and birth defects such as Down syndrome.

Created2011-03-24
172772-Thumbnail Image.png
Description

The Human Genome Project (HGP) was an international scientific effort to sequence the entire human genome, that is, to produce a map of the base pairs of DNA in the human chromosomes, most of which do not vary among individuals. The HGP started in the US in 1990 as a

The Human Genome Project (HGP) was an international scientific effort to sequence the entire human genome, that is, to produce a map of the base pairs of DNA in the human chromosomes, most of which do not vary among individuals. The HGP started in the US in 1990 as a public effort and included scientists and laboratories located in France, Germany, Japan, China, and the United Kingdom. Scientists hypothesized that mapping and sequencing the human genome would facilitate better theories of human development, the genetic causes and predispositions for a number of diseases, and individualized medicine. The HGP, alongside the private effort taken up by the company Celera Genomics, released a working draft of the human genome in 2001 and a complete sequence in 2003. The history of the HGP ripples beyond biomedical science and technology into the social, economic, and political.

Created2014-05-06
172818-Thumbnail Image.png
Description

The Public Broadcasting Station (PBS) documentary Life's Greatest Miracle (abbreviated Miracle, available at http://www.pbs.org/wgbh/nova/miracle/program.html), is arguably one of the most vivid illustrations of the making of new human life. Presented as part of the PBS television series NOVA, Miracle is a little less than an hour long and was

The Public Broadcasting Station (PBS) documentary Life's Greatest Miracle (abbreviated Miracle, available at http://www.pbs.org/wgbh/nova/miracle/program.html), is arguably one of the most vivid illustrations of the making of new human life. Presented as part of the PBS television series NOVA, Miracle is a little less than an hour long and was first aired 20 November 2001. The program was written and produced by Julia Cort and features images by renowned Swedish photographer Lennart Nilsson. It comes as a sequel to the award-winning 1983 NOVA production, The Miracle of Life, which exhibits Nilsson's photography as well. The program showcases a combination of graphic animation, endoscopic and microscopic footage, as well as the story of a couple who are expecting a child. It features a number of new technological and scientific developments not present in its prequel, providing additional relevant information. By depicting human development in a clear and fresh manner, Miracle helps shed light on this indispensible aspect of life. Following is a description of the documentary, highlighting the key points of the film and explaining images featured in it.

Created2010-11-20
172905-Thumbnail Image.png
Description

Sir John Bertrand Gurdon further developed nuclear transplantation, the technique used to clone organisms and to create stem cells, while working in Britain in the second half of the twentieth century. Gurdon's research built on the work of Thomas King and Robert Briggs in the United States, who in 1952

Sir John Bertrand Gurdon further developed nuclear transplantation, the technique used to clone organisms and to create stem cells, while working in Britain in the second half of the twentieth century. Gurdon's research built on the work of Thomas King and Robert Briggs in the United States, who in 1952 published findings that indicated that scientists could take a nucleus from an early embryonic cell and successfully transfer it into an unfertilized and enucleated egg cell. Briggs and King also concluded that a nucleus taken from an adult cell and similarly inserted into an unfertilized enucleated egg cell could not produce normal development. In 1962, however, Gurdon published results that indicated otherwise. While Briggs and King worked with Rana pipiens frogs, Gurdon used the faster-growing species Xenopus laevis to show that nuclei from specialized cells still held the potential to be any cell despite its specialization. In 2012, the Nobel Prize Committee awarded Gurdon and Shinya Yamanaka its prize in physiology and medicine for for their work on cloning and pluripotent stem cells.

Created2012-10-11
172691-Thumbnail Image.png
Description

Clomiphene citrate, more commonly known by its brand names Clomid and Serophene, is a medication prescribed to women to stimulate ovulation in order to treat infertility. It stimulates ovulation in women who do not ovulate or ovulate irregularly. This drug was created by Dr. Frank Palopoli in 1956

Clomiphene citrate, more commonly known by its brand names Clomid and Serophene, is a medication prescribed to women to stimulate ovulation in order to treat infertility. It stimulates ovulation in women who do not ovulate or ovulate irregularly. This drug was created by Dr. Frank Palopoli in 1956 while he worked for Merrell Company. It first successfully induced ovulation in women in 1961 and was approved by the Federal and Drug Administration (FDA) in 1967. This medication can be used to help women conceive naturally, to time ovulation for intrauterine insemination, or to stimulate the maturation of eggs to be extracted and used in procedures such as in vitro fertilization (IVF), gamete intrafallopian transfer (GIFT), and zygote intrafallopian transfer (ZIFT).

Created2009-07-25
173701-Thumbnail Image.png
Description

Assisted reproductive technologies (ART) are a collection of different techniques designed to help those who are infertile achieve a successful pregnancy. The most popular technology currently in use is in vitro fertilization (IVF), but others include gamete intrafallopian transfer (GIFT), zygote intrafallopian transfer (ZIFT), intrauterine insemination (IUI), and intracytoplasmic

Assisted reproductive technologies (ART) are a collection of different techniques designed to help those who are infertile achieve a successful pregnancy. The most popular technology currently in use is in vitro fertilization (IVF), but others include gamete intrafallopian transfer (GIFT), zygote intrafallopian transfer (ZIFT), intrauterine insemination (IUI), and intracytoplasmic sperm injection (ICSI). Although not encompassed under the umbrella term of ART, there are also various hormonal medications that can induce ovulation such as clomiphene citrate that can either be used alone to help women conceive, or used in conjunction with the above techniques. Infertility is a problem that has affected people throughout history, but it was only in the last half of the twentieth century that medical research developed technologies to help those who are infertile become pregnant.

Created2009-07-22
173751-Thumbnail Image.png
Description

All sexually reproducing, multicellular diploid eukaryotes begin life as embryos. Understanding the stages of embryonic development is vital to explaining how eukaryotes form and how they are related on the tree of life. This understanding can also help answer questions related to morphology, ethics, medicine, and other pertinent fields of

All sexually reproducing, multicellular diploid eukaryotes begin life as embryos. Understanding the stages of embryonic development is vital to explaining how eukaryotes form and how they are related on the tree of life. This understanding can also help answer questions related to morphology, ethics, medicine, and other pertinent fields of study. In particular, the field of comparative embryology is concerned with documenting the stages of ontogeny. In the nineteenth century, embryologist Karl Ernst von Baer famously noted that embryos of different species generally start out with very similar structure and diverge as they progress through development. This similarity allows for the construction of a series of detailed stages exhibited by a range of different organisms (though in reality embryonic development is a continuous, not staggered, process) describing the progression of events that begin with conception.

Created2010-10-20
173862-Thumbnail Image.png
Description

The process of gastrulation allows for the formation of the germ layers in metazoan embryos, and is generally achieved through a series of complex and coordinated cellular movements. The process of gastrulation can be either diploblastic or triploblastic. In diploblastic organisms like cnidaria or ctenophora, only the endoderm and the

The process of gastrulation allows for the formation of the germ layers in metazoan embryos, and is generally achieved through a series of complex and coordinated cellular movements. The process of gastrulation can be either diploblastic or triploblastic. In diploblastic organisms like cnidaria or ctenophora, only the endoderm and the ectoderm form; in triploblastic organisms (most other complex metazoans), triploblastic gastrulation produces all three germ layers. The gastrula, the product of gastrulation, was named by Ernst Haeckel in the mid-1870s; the name comes from Latin, where gaster means stomach, and indeed the gut (archenteron) is one of the most distinctive features of the gastrula.

Created2011-03-10
173585-Thumbnail Image.png
Description

Written by Orli Lotan on behalf of the Knesset (Israeli Parliament) Center for Research and Information, "Limitations in Abortion Legislation: A Comparative Study" (hereafter abbreviated "Legislation") examines abortion legislation in Israel, the US, Canada, and a number of European countries. The study also acknowledges the medical, moral, ethical, and religious

Written by Orli Lotan on behalf of the Knesset (Israeli Parliament) Center for Research and Information, "Limitations in Abortion Legislation: A Comparative Study" (hereafter abbreviated "Legislation") examines abortion legislation in Israel, the US, Canada, and a number of European countries. The study also acknowledges the medical, moral, ethical, and religious implications of abortion and the impact of such legislation on society in each country. It acknowledges the conflicting viewpoints that exist regarding the issue of abortion, but notes the overall global liberalization of the legal system since the 1950s and the significant drop in maternal, abortion-related illness and death. The following is a description of the study, taken from the original Hebrew version written in November 2007.

Created2010-11-20