This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 20
Filtering by

Clear all filters

173888-Thumbnail Image.png
Description

"Induction and Patterning of the Primitive Streak, an Organizing Center of Gastrulation in the Amniote," (hereafter referred to as "Induction") examines the mechanisms underlying early amniote gastrulation and the formation of the primitive streak and midline axis. The review, authored by Takashi Mikawa and colleagues at Cornell University Medical College,

"Induction and Patterning of the Primitive Streak, an Organizing Center of Gastrulation in the Amniote," (hereafter referred to as "Induction") examines the mechanisms underlying early amniote gastrulation and the formation of the primitive streak and midline axis. The review, authored by Takashi Mikawa and colleagues at Cornell University Medical College, was published in Developmental Dynamics in 2004. The article primarily discusses chick embryos as a model organism for nonrodent amniote gastrulation, although it intermittently touches on nonamniote gastrulation for comparative purposes. "Induction" attempts to explain the initiation of cell differentiation and embryo organization, one of the most intriguing processes of embryology.

Created2011-04-14
Description

Meiosis, the process by which sexually-reproducing organisms generate gametes (sex cells), is an essential precondition for the normal formation of the embryo. As sexually reproducing, diploid, multicellular eukaryotes, humans rely on meiosis to serve a number of important functions, including the promotion of genetic diversity and the creation of proper

Meiosis, the process by which sexually-reproducing organisms generate gametes (sex cells), is an essential precondition for the normal formation of the embryo. As sexually reproducing, diploid, multicellular eukaryotes, humans rely on meiosis to serve a number of important functions, including the promotion of genetic diversity and the creation of proper conditions for reproductive success. However, the primary function of meiosis is the reduction of the ploidy (number of chromosomes) of the gametes from diploid (2n, or two sets of 23 chromosomes) to haploid (1n or one set of 23 chromosomes). While parts of meiosis are similar to mitotic processes, the two systems of cellular division produce distinctly different outcomes. Problems during meiosis can stop embryonic development and sometimes cause spontaneous miscarriages, genetic errors, and birth defects such as Down syndrome.

Created2011-03-24
172735-Thumbnail Image.png
Description

The Sex-determining Region Y (Sry in mammals but SRY in humans) is a gene found on Y chromosomes that leads to the development of male phenotypes, such as testes. The Sry gene, located on the short branch of the Y chromosome, initiates male embryonic development in the XY sex determination

The Sex-determining Region Y (Sry in mammals but SRY in humans) is a gene found on Y chromosomes that leads to the development of male phenotypes, such as testes. The Sry gene, located on the short branch of the Y chromosome, initiates male embryonic development in the XY sex determination system. The Sry gene follows the central dogma of molecular biology; the DNA encoding the gene is transcribed into messenger RNA, which then produces a single Sry protein. The Sry protein is also called the testis-determining factor (TDF), a protein that initiates male development in humans, placental mammals, and marsupials. The Sry protein is a transcription factor that can bind to regions of testis-specific DNA, bending specific DNA and activating or enhancing its abilities to promote testis formation, marking the first step towards male, rather than female, development in the embryo.

Created2013-12-31
172814-Thumbnail Image.png
Description

Studies in Spermatogenesis is a two volume book written by Nettie Maria Stevens, and published by the Carnegie Institution of Washington in 1905 and 1906. In the books Stevens explains the research she conducted on chromosomal sex determination in the sperm and egg cells of insect species while at Bryn

Studies in Spermatogenesis is a two volume book written by Nettie Maria Stevens, and published by the Carnegie Institution of Washington in 1905 and 1906. In the books Stevens explains the research she conducted on chromosomal sex determination in the sperm and egg cells of insect species while at Bryn Mawr College, near Philadelphia, Pennsylvania. Studies in Spermatogenesis described early examples of chromosomal XY sex-determination.

Created2014-01-22
172818-Thumbnail Image.png
Description

The Public Broadcasting Station (PBS) documentary Life's Greatest Miracle (abbreviated Miracle, available at http://www.pbs.org/wgbh/nova/miracle/program.html), is arguably one of the most vivid illustrations of the making of new human life. Presented as part of the PBS television series NOVA, Miracle is a little less than an hour long and was

The Public Broadcasting Station (PBS) documentary Life's Greatest Miracle (abbreviated Miracle, available at http://www.pbs.org/wgbh/nova/miracle/program.html), is arguably one of the most vivid illustrations of the making of new human life. Presented as part of the PBS television series NOVA, Miracle is a little less than an hour long and was first aired 20 November 2001. The program was written and produced by Julia Cort and features images by renowned Swedish photographer Lennart Nilsson. It comes as a sequel to the award-winning 1983 NOVA production, The Miracle of Life, which exhibits Nilsson's photography as well. The program showcases a combination of graphic animation, endoscopic and microscopic footage, as well as the story of a couple who are expecting a child. It features a number of new technological and scientific developments not present in its prequel, providing additional relevant information. By depicting human development in a clear and fresh manner, Miracle helps shed light on this indispensible aspect of life. Following is a description of the documentary, highlighting the key points of the film and explaining images featured in it.

Created2010-11-20
172855-Thumbnail Image.png
Description

By 2011, researchers in the US had established that non-invasive blood tests can accurately determine the gender of a human fetus as early as seven weeks after fertilization. Experts predicted that this ability may encourage the use of prenatal sex screening tests by women interested to know the gender of

By 2011, researchers in the US had established that non-invasive blood tests can accurately determine the gender of a human fetus as early as seven weeks after fertilization. Experts predicted that this ability may encourage the use of prenatal sex screening tests by women interested to know the gender of their fetuses. As more people begin to use non-invasive blood tests that accurately determine the sex of the fetus at 7 weeks, many ethical questions pertaining to regulation, the consequences of gender-imbalanced societies, and altered meanings of the parent-child relationship.

Created2014-03-23
172889-Thumbnail Image.png
Description

Ethical Issues in Human Stem Cell Research: Executive Summary was published in September 1999 by The US National Bioethics Advisory Commission in response to a national debate about whether or not the US federal government should fund embryonic stem cell research. Ethical Issues in Human Stem Cell Research recommended

Ethical Issues in Human Stem Cell Research: Executive Summary was published in September 1999 by The US National Bioethics Advisory Commission in response to a national debate about whether or not the US federal government should fund embryonic stem cell research. Ethical Issues in Human Stem Cell Research recommended policy to US President William Clinton's administration, which advocated for federal spending on the use of stem research on stem cells that came from embryos left over from in vitro fertilization (IVF) fertility treatments. Although NBAC's proposals never became legislation, the report helped shape public, private, and international discourse on stem cell research policy.

Created2014-04-01
172905-Thumbnail Image.png
Description

Sir John Bertrand Gurdon further developed nuclear transplantation, the technique used to clone organisms and to create stem cells, while working in Britain in the second half of the twentieth century. Gurdon's research built on the work of Thomas King and Robert Briggs in the United States, who in 1952

Sir John Bertrand Gurdon further developed nuclear transplantation, the technique used to clone organisms and to create stem cells, while working in Britain in the second half of the twentieth century. Gurdon's research built on the work of Thomas King and Robert Briggs in the United States, who in 1952 published findings that indicated that scientists could take a nucleus from an early embryonic cell and successfully transfer it into an unfertilized and enucleated egg cell. Briggs and King also concluded that a nucleus taken from an adult cell and similarly inserted into an unfertilized enucleated egg cell could not produce normal development. In 1962, however, Gurdon published results that indicated otherwise. While Briggs and King worked with Rana pipiens frogs, Gurdon used the faster-growing species Xenopus laevis to show that nuclei from specialized cells still held the potential to be any cell despite its specialization. In 2012, the Nobel Prize Committee awarded Gurdon and Shinya Yamanaka its prize in physiology and medicine for for their work on cloning and pluripotent stem cells.

Created2012-10-11
172683-Thumbnail Image.png
Description

In the late 1980s, Peter Goodfellow in London, UK led a team of researchers who showed that the SRY gene in humans codes a protein that causes testes to develop in embryos. During this time, scientists in London and Paris, including Peter Koompan and John Gubbay, proposed that SRY was

In the late 1980s, Peter Goodfellow in London, UK led a team of researchers who showed that the SRY gene in humans codes a protein that causes testes to develop in embryos. During this time, scientists in London and Paris, including Peter Koompan and John Gubbay, proposed that SRY was the gene on the Y chromosome responsible for encoding the testis-determining factor (TDF) protein. The TDF is a protein that initiates embryo to develop male characteristics. Looking for evidence that SRY was the TDF, Goodfellow and colleagues examined people who were anatomically female, but whose cells had Y chromosomes. Females normally have cells with two X sex chromosomes (XX), while males normally have cells with one X and one Y chromosome (XY). Goodfellow's team discovered that individuals with Y chromosomes developed as female instead of as male due to inactive SRY sequences on the Y chromosome. Goodfellow and colleagues compiled the results of their experiment in a paper titled Genetic Evidence Equating SRY and the Testis-Determining Factor in 1990. Their results showed that the SRY gene is necessary for male characteristics to develop in embryos, and that SRY encodes the TDF protein.

Created2014-01-10
173732-Thumbnail Image.png
Description

The International Treaty on Plant Genetic Resources for Food and Agriculture, referred to as the Plant Treaty, was approved on 3 November 2001 by Members of the Food and Agriculture Organization (FAO), headquartered in Rome, Italy. The FAO is an agency of the United Nations, headquartered in New York City,

The International Treaty on Plant Genetic Resources for Food and Agriculture, referred to as the Plant Treaty, was approved on 3 November 2001 by Members of the Food and Agriculture Organization (FAO), headquartered in Rome, Italy. The FAO is an agency of the United Nations, headquartered in New York City, New York. The Plant Treaty established international standards for the conservation and exchange of plant genetic material between participating countries. Plant genetic material is a term for plant germplasm, the physical material used by plants to reproduce themselves, and the term connotes seeds, vegetative propagations, and DNA. Plant genetic resources are the collective genetic diversity of plant species in the laboratory, farm, and field. They are described as resources because of their value for food and agricultural purposes.

ContributorsBaranski, Marci (Author) / O'Brien, Ceara (Editor)
Created2013-10-07