This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 15
Filtering by

Clear all filters

173256-Thumbnail Image.png
Description

According to the US National Institutes of Health (NIH), the standard American source on stem cell research, three characteristics of stem cells differentiate them from other cell types: (1) they are unspecialized cells that (2) divide for long periods, renewing themselves and (3) can give rise to specialized cells, such

According to the US National Institutes of Health (NIH), the standard American source on stem cell research, three characteristics of stem cells differentiate them from other cell types: (1) they are unspecialized cells that (2) divide for long periods, renewing themselves and (3) can give rise to specialized cells, such as muscle and skin cells, under particular physiological and experimental conditions. When allowed to grow in particular environments, stem cells divide many times. This ability to proliferate can yield millions of stem cells over several months. As long as the stem cells remain unspecialized, meaning they lack tissue-specific structures, they are able to sustain long-term self-renewal.

Created2010-10-29
173122-Thumbnail Image.png
Description

In June 2017, the Iowa Supreme Court decided the case Plowman v. Fort Madison Community Hospital, or Plowman v. FMCH, and ruled that women who gave birth to children with severe disabilities could sue for wrongful birth in Iowa. Specifically, after Plowman v. FMCH, a woman could sue for wrongful

In June 2017, the Iowa Supreme Court decided the case Plowman v. Fort Madison Community Hospital, or Plowman v. FMCH, and ruled that women who gave birth to children with severe disabilities could sue for wrongful birth in Iowa. Specifically, after Plowman v. FMCH, a woman could sue for wrongful birth if she believed that her physicians failed to disclose evidence of fetal abnormalities that may have prompted her to terminate the pregnancy. Pamela and Jeremy Plowman filed the suit against the Fort Madison Community Hospital in Fort Madison, Iowa, alleging that hospital physicians failed to inform them that a prenatal test showed fetal abnormalities. Plowman v. FMCH gave women in Iowa the legal right to sue if physicians failed to tell them about fetal defects.

Created2019-05-23
173162-Thumbnail Image.png
Description

Hormone releasing intrauterine devices or hormonal IUDs are contraceptive devices placed in a woman’s uterus to prevent pregnancy by continuously releasing a low dose of certain hormones. Jouri Valter Tapani Luukkainen, a medical researcher at the University of Helsinki, introduced the first hormonal IUD in 1976. Luukkainen’s IUD was a

Hormone releasing intrauterine devices or hormonal IUDs are contraceptive devices placed in a woman’s uterus to prevent pregnancy by continuously releasing a low dose of certain hormones. Jouri Valter Tapani Luukkainen, a medical researcher at the University of Helsinki, introduced the first hormonal IUD in 1976. Luukkainen’s IUD was a plastic device shaped like a capital T. The horizontal shafts of the IUD held a reservoir of the hormone Levonorgestrel that the IUD slowly released at a constant rate over the IUD’s lifetime, allowing the hormonal IUD to remain effective for five to seven years. Women can use hormonal IUDs for long term contraception that requires no maintenance on the part of the user. The hormonal IUD provides women an option for reliable long-term birth control that does not require maintenance to remain effective.

Created2019-06-03
173032-Thumbnail Image.png
Description

Much change has occurred in abortion laws over the past 50 years, this thesis tracks those changes principally through Supreme Court Cases, such as United States v. Milan Vuitch, Roe v. Wade, and Gonzales v. Planned Parenthood among others. The landscape of abortion law in the US continues to shift

Much change has occurred in abortion laws over the past 50 years, this thesis tracks those changes principally through Supreme Court Cases, such as United States v. Milan Vuitch, Roe v. Wade, and Gonzales v. Planned Parenthood among others. The landscape of abortion law in the US continues to shift today, as recently as 2017 with Plowman v. FMCH cases were being heard in courts that wrought subtle yet important changes in abortion law.

Created2021-02-18
Description

The copper intrauterine device, or IUD, is a long-term, reversible contraceptive first introduced by Howard Tatum and Jamie Zipper in 1967. Health care providers place an IUD inside a woman’s uterus to prevent pregnancy. Copper IUDs are typically made of T-shaped plastic with some portion covered with exposed copper. Prior

The copper intrauterine device, or IUD, is a long-term, reversible contraceptive first introduced by Howard Tatum and Jamie Zipper in 1967. Health care providers place an IUD inside a woman’s uterus to prevent pregnancy. Copper IUDs are typically made of T-shaped plastic with some portion covered with exposed copper. Prior to the invention of the first IUDs, women had few long-term options for safe and reliable birth control. Those options mostly consisted of barrier methods and the oral birth control pill, which were only effective if used correctly and consistently. For women seeking to control their fertility, a copper IUD was one of the first forms of long-term birth control that was highly effective and did not require consistent and regular action on the woman’s part to remain effective.

Created2018-07-05
173484-Thumbnail Image.png
Description

Gonzales v. Planned Parenthood Federation of America, Inc. (Gonzales v. Planned Parenthood) was the 2007 US Supreme Court case in which the Court declared the Partial Birth Abortion Ban Act of 2003 constitutional, making partial birth abortions illegal. In 2003, the US Congress passed the Partial-Birth Abortion Ban Act, which

Gonzales v. Planned Parenthood Federation of America, Inc. (Gonzales v. Planned Parenthood) was the 2007 US Supreme Court case in which the Court declared the Partial Birth Abortion Ban Act of 2003 constitutional, making partial birth abortions illegal. In 2003, the US Congress passed the Partial-Birth Abortion Ban Act, which prohibited an abortion technique called partial birth abortion. A partial birth abortion is similar to, but not the same as, a Dilation and Extraction or D&X abortion, which is what the Ban was intended to prohibit. Gonzales v. Planned Parenthood eventually reached the Supreme Court, where the Court ruled that the Ban was constitutional. In Gonzales v. Planned Parenthood, the Court ruled for the first time that it was constitutional to ban a method of abortion without providing an exception for cases where a pregnant woman’s life was endangered.

Created2018-06-01
173487-Thumbnail Image.png
Description

Milan Vuitch was an abortion provider in the twentieth century, who performed thousands of abortions in Washington, DC, at a time when abortions were legal only if they preserved the life or health of the pregnant woman. Vuitch was a frequent critic of Washington DC’s anti-abortion law and was arrested

Milan Vuitch was an abortion provider in the twentieth century, who performed thousands of abortions in Washington, DC, at a time when abortions were legal only if they preserved the life or health of the pregnant woman. Vuitch was a frequent critic of Washington DC’s anti-abortion law and was arrested multiple times for providing abortions that were not considered necessary to preserve the pregnant woman’s life. After several arrests, Vuitch challenged the law under which he had been arrested, and his case made its way to the Supreme Court in Vuitch v. United States. Although Vuitch technically lost in his Supreme Court case, the Court’s ruling expanded the meaning of health and Vuitch was able to continue providing abortions. Vuitch provided abortions to women who sought them but were not able to legally justify them, and his Supreme Court case was one of the earliest challenges to the abortion law.

Created2018-06-09
173518-Thumbnail Image.png
Description

In November 1998, two independent reports were published concerning the first isolation of pluripotent human stem cells, one of which was "Derivation of Pluripotent Stem Cells from Cultured Human Primordial Germ Cells." This paper, authored by John D. Gearhart and his research team - Michael J Shamblott, Joyce Axelman, Shunping

In November 1998, two independent reports were published concerning the first isolation of pluripotent human stem cells, one of which was "Derivation of Pluripotent Stem Cells from Cultured Human Primordial Germ Cells." This paper, authored by John D. Gearhart and his research team - Michael J Shamblott, Joyce Axelman, Shunping Wang, Elizabeith M. Bugg, John W. Littlefield, Peter J. Donovan, Paul D. Blumenthal, and George R. Huggins - was published in Proceedings of the National Academy of Science soon after James A. Thomson and his research team published "Embryonic Stem Cell Lines Derived from Human Blastocysts" in Science. Gearhart 's paper suggested that pluripotent human stem cells, which have the ability to develop into all cell types that make up the body, could be derived from primordial germ cells, which are precursors of fully differentiated germ cells, isolated from embryos. At the time, Gearhart was a professor of obstetrics and gynecology at Johns Hopkins University School of Medicine. With a background in genetics, he had devoted the majority of his research to how genes regulate tissue and embryo formation. However, the successful isolation of mice embryonic stem cells encouraged Gearhart to pursue the isolation of similar cells in humans. The principal difference between human embryonic stem (ES) cells, which Thomson 's team derived, and human embryonic germ (EG) cells, which Gearhart 's team derived, is that human embryonic germ cells are derived from early germ cells. Nonetheless, they are thought to share similar properties to human embryonic stem cells.

Created2010-09-14
173778-Thumbnail Image.png
Description

James Alexander Thomson, affectionately known as Jamie Thomson, is an American developmental biologist whose pioneering work in isolating and culturing non-human primate and human embryonic stem cells has made him one of the most prominent scientists in stem cell research. While growing up in Oak Park, Illinois, Thomson's rocket-scientist uncle

James Alexander Thomson, affectionately known as Jamie Thomson, is an American developmental biologist whose pioneering work in isolating and culturing non-human primate and human embryonic stem cells has made him one of the most prominent scientists in stem cell research. While growing up in Oak Park, Illinois, Thomson's rocket-scientist uncle inspired him to pursue science as a career. Born on 20 December 1958, Thomson entered the nearby University of Illinois Urbana-Champaign nineteen years later as a National Merit Scholar majoring in biophysics. He became fascinated with development via the encouragement and influence of Fred Meins, one of his undergraduate professors. After graduating as a Phi Beta Kappa scholar, Thomson took his interest in biology to the University of Pennsylvania where he earned two doctorate degrees: one in veterinary medicine, completed in 1985, and the other in molecular biology, completed in 1988. It was during his graduate years that Thomson began working with embryonic stem cells.

Created2011-02-01
173856-Thumbnail Image.png
Description

On 2 December 2007, Science published a report on creating human induced pluripotent stem (iPS) cells from human somatic cells: "Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells." This report came from a team of Madison, Wisconsin scientists: Junying Yu, Maxim A. Vodyanik, Kim Smuga-Otto, Jessica Antosiewicz-Bourget, Jennifer

On 2 December 2007, Science published a report on creating human induced pluripotent stem (iPS) cells from human somatic cells: "Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells." This report came from a team of Madison, Wisconsin scientists: Junying Yu, Maxim A. Vodyanik, Kim Smuga-Otto, Jessica Antosiewicz-Bourget, Jennifer L. Frane, Shulan Tian, Jeff Nie, Gudrun A. Jonsdottir, Victor Ruotti, Ron Stewart, Igor I. Slukvin, and James A. Thomson. Earlier that year Shinya Yamanaka at Kyoto University, Japan published a similar paper,"Generation of Germline-Competent Induced Pluripotent Stem Cells," in Nature. Both papers independently identified four genes used to reprogram human somatic cells to pluripotent stem cells, which are cells that have the ability to develop into any specialized cell type making up the body. The reprogrammed somatic cells were referred to as iPS cells and they exhibit fundamental qualities of human embryonic stem (ES) cells.

Created2010-06-29