This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 26
Filtering by

Clear all filters

173906-Thumbnail Image.png
Description

This influential opinion by famed jurist Oliver Wendell Holmes, Jr. was copied by courts throughout the United States. For over sixty years, courts refused to recognize a cause of action on behalf of a child who died before or after birth as a result of injuries suffered in the womb

This influential opinion by famed jurist Oliver Wendell Holmes, Jr. was copied by courts throughout the United States. For over sixty years, courts refused to recognize a cause of action on behalf of a child who died before or after birth as a result of injuries suffered in the womb because the fetus was considered legally a part of its mother and thus did not possess personhood. This policy changed after the decision in Bonbrest v. Kotz in 1946.

Created2008-05-09
172713-Thumbnail Image.png
Description

Edward Donnall Thomas, an American physician and scientist, gained recognition in the scientific community for conducting the first bone marrow transplant, a pioneering form of hematopoietic stem cell transplantation (HSCT). Bone marrow transplants are considered to be the first successful example of tissue engineering, a field within regenerative medicine that

Edward Donnall Thomas, an American physician and scientist, gained recognition in the scientific community for conducting the first bone marrow transplant, a pioneering form of hematopoietic stem cell transplantation (HSCT). Bone marrow transplants are considered to be the first successful example of tissue engineering, a field within regenerative medicine that uses hematopoietic stem cells (HSCs) as a vehicle for treatment. Prior to Thomas's groundbreaking work, most blood-borne diseases, including certain inherited and autoimmune diseases, were considered lethal.

Created2010-11-19
173718-Thumbnail Image.png
Description

Tissue engineering is a field of regenerative medicine that integrates the knowledge of scientists, physicians, and engineers into the construction or reconstruction of human tissue. Practitioners of tissue engineering seek to repair, replace, maintain, and enhance the abilities of a specific tissue or organ by means of living cells. More

Tissue engineering is a field of regenerative medicine that integrates the knowledge of scientists, physicians, and engineers into the construction or reconstruction of human tissue. Practitioners of tissue engineering seek to repair, replace, maintain, and enhance the abilities of a specific tissue or organ by means of living cells. More often than not stem cells are the form of living cells used in this technology. Tissue engineering is one of the disciplines involved in translating knowledge of developmental biology into the clinical setting. One focus that this field has taken is the understanding of tissue and organ development during embryogenesis, as this knowledge will open avenues to new applications of this technology.

Created2010-10-29
173734-Thumbnail Image.png
Description

Descriptions of terms utilized in law articles. Terms like probable, questionable, and doubtful are defined and values of case precedents are explained.

Created2008-05-09
173776-Thumbnail Image.png
Description

The purpose of regenerative medicine, especially tissue engineering, is to replace damaged tissue with new tissue that will allow the body to resume normal function. The uniqueness of tissue engineering is that it can restore normal structure in addition to repairing tissue function, and is often accomplished using stem cells.

The purpose of regenerative medicine, especially tissue engineering, is to replace damaged tissue with new tissue that will allow the body to resume normal function. The uniqueness of tissue engineering is that it can restore normal structure in addition to repairing tissue function, and is often accomplished using stem cells. The first type of tissue engineering using stem cells was hematopoietic stem cell transplantation (HSCT), a surgical procedure in which hematopoietic stem cells (HSCs) are infused into a host to treat a variety of blood diseases, cancers, and immunodeficiencies. While there is a standard procedure for the infusion of these cells into a donor, variations in the sources of hematopoietic stem cells, and in the relationship between donor and recipient, do produce some variability in the procedure.

Created2010-10-11
173839-Thumbnail Image.png
Description

In Arizona, statutes that protect persons, such as the wrongful death statute, will not be interpreted by the courts to grant personhood status to frozen embryos. The legislature may grant such protection in the statute if it chooses to do so by explicitly defining the word person to include frozen

In Arizona, statutes that protect persons, such as the wrongful death statute, will not be interpreted by the courts to grant personhood status to frozen embryos. The legislature may grant such protection in the statute if it chooses to do so by explicitly defining the word person to include frozen embryos.

Created2008-05-09
173840-Thumbnail Image.png
Description

In a case of first impression in the state of New York, the highest state court decided that a priori written agreement between progenitors of frozen embryos regarding the disposition of their "pre-zygotes" in the event of divorce is binding. By copying the general result arrived at by the Tennessee

In a case of first impression in the state of New York, the highest state court decided that a priori written agreement between progenitors of frozen embryos regarding the disposition of their "pre-zygotes" in the event of divorce is binding. By copying the general result arrived at by the Tennessee Supreme Court in Davis v. Davis in 1992, the New York court magnified the weight of authority in favor of upholding prior written agreements for in vitro fertilization practices.

Created2008-04-29
173865-Thumbnail Image.png
Description

The discovery of hematopoietic stem cells (HSCs) provided a pioneering step in stem cell research. HSCs are a type of multipotent adult stem cell, characterized by their ability to self-renew and differentiate into erythrocyte (red blood cell) and leukocyte (white blood cell) cell lineages. In terms of function, these cells

The discovery of hematopoietic stem cells (HSCs) provided a pioneering step in stem cell research. HSCs are a type of multipotent adult stem cell, characterized by their ability to self-renew and differentiate into erythrocyte (red blood cell) and leukocyte (white blood cell) cell lineages. In terms of function, these cells are responsible for the continual renewal of the erythrocytes, leukocytes, and platelets in the body through a process called hematopoiesis. They also play an important role in the formation of vital organs such as the liver and spleen during fetal development. The early biological knowledge obtained from the studies of HSCs established the base of knowledge for understanding other stem cell systems. In addition, these cells have a vital role in furthering stem cell research for clinical applications. Regenerative medicine is a field of medicine that has applied HSCs to the treatment of blood-borne diseases such as leukemia and lymphoma and of cancer patients undergoing chemotherapy.

Created2010-10-11
173876-Thumbnail Image.png
Description

Renowned physician and scientist William Harvey is best known for his accurate description of how blood circulates through the body. While his published work on the circulation of blood is considered the most important of his academic life, Harvey also made significant contributions to embryology with the publication of his

Renowned physician and scientist William Harvey is best known for his accurate description of how blood circulates through the body. While his published work on the circulation of blood is considered the most important of his academic life, Harvey also made significant contributions to embryology with the publication of his book Exercitationes de Generatione Animalium in 1651. In this book he established several theories that would set the stage for modern embryology and addressed many embryological issues including conception, embryogenesis, and spontaneous generation.

Created2010-06-18
173613-Thumbnail Image.png
Description

Birth Control or the Limitation of Offspring was written by American eugenics and birth control advocate William J. Robinson. First published in 1916, the final edition (forty-eighth) was published in 1936, the same year that Robinson died. As a medical doctor and author, Robinson used his influence to promote propaganda

Birth Control or the Limitation of Offspring was written by American eugenics and birth control advocate William J. Robinson. First published in 1916, the final edition (forty-eighth) was published in 1936, the same year that Robinson died. As a medical doctor and author, Robinson used his influence to promote propaganda for "fewer and better babies," by focusing on contraception. Even Margaret Sanger, another prominent eugenics and birth control advocate, took great interest in this book. Robinson had three goals in mind when writing Birth Control. First, he advocated for limiting the number of children to parental financial means through prevention of conception. Second, he addressed the various forms of preventing conception, and suggested the best and most harmless way of doing such. Last, Robinson wanted information about birth control to be readily available to anyone who sought it.

Created2010-07-01