This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 52
Filtering by

Clear all filters

172989-Thumbnail Image.png
Description

On 29 June 1988, in Bowen v. Kendrick, the US Supreme Court ruled in a five-to-four decision that the 1981 Adolescent Family Life Act, or AFLA, was constitutional. Under AFLA, the US government could distribute federal funding for abstinence-only sexual education programs, oftentimes given to groups with religious affiliations. As

On 29 June 1988, in Bowen v. Kendrick, the US Supreme Court ruled in a five-to-four decision that the 1981 Adolescent Family Life Act, or AFLA, was constitutional. Under AFLA, the US government could distribute federal funding for abstinence-only sexual education programs, oftentimes given to groups with religious affiliations. As a federal taxpayer, Chan Kendrick challenged the constitutionality of AFLA, claiming it violated the separation of church and state. The Supreme Court found that although AFLA funded programs that aligned with certain religious ideologies, it was constitutional because it did not encourage government involvement in religion, and it held a valid secular purpose in seeking to prevent adolescent pregnancy and premarital sexual relations. By upholding AFLA, Bowen v. Kendrick enabled the US government to continue funding abstinence-only education, which researchers have found to be ineffective.

Created2021-02-26
173008-Thumbnail Image.png
Description

Published in 2002, prostate cancer researcher John R. Masters authored a review article HeLa Cells 50 Years On: The Good, The Bad, and The Ugly that described the historical and contemporary context of the HeLa cell line in research in Nature Reviews Cancer. The HeLa cell line was one of

Published in 2002, prostate cancer researcher John R. Masters authored a review article HeLa Cells 50 Years On: The Good, The Bad, and The Ugly that described the historical and contemporary context of the HeLa cell line in research in Nature Reviews Cancer. The HeLa cell line was one of the first documented immortal cell lines, isolated from cervical cancer patient Henrietta Lacks in 1951 at The Johns Hopkins Hospital in Baltimore, Maryland. An immortal cell line is a cluster of cells that continuously multiply on their own outside of the original host. Though the HeLa cell line has contributed to many biomedical research advancements such as the polio vaccine, its usage in research has been controversial for many reasons, including that Lacks was a Black woman who did not knowingly donate her cells to science. In the article “HeLa Cells 50 Years On: The Good, The Bad, and The Ugly,” Masters describes that, despite the benefits of the HeLa cell line, it has caused significant negative impacts on research due to its propensity to contaminate other cell lines, which can potentially invalidate research findings.

Created2021-05-02
172944-Thumbnail Image.png
Description

In 2005, Ernest McCulloch and James Till published the article “Perspectives on the Properties of Stem Cells,” which discusses the various properties and future possibilities for the use of stem cells. Stem cells are unspecialized cells that can develop into several different cell types. In the article published in the

In 2005, Ernest McCulloch and James Till published the article “Perspectives on the Properties of Stem Cells,” which discusses the various properties and future possibilities for the use of stem cells. Stem cells are unspecialized cells that can develop into several different cell types. In the article published in the journal Nature on 1 October 2005, the authors say they wrote the article to dispel misconceptions about what stem cells are, what they do, address some controversies surrounding stem cells, and discuss potential uses of stem cells. In the article, McCulloch and Till reveal how stem cell research has revolutionized cancer treatment as well as set the stage for future embryonic and adult stem cell research.

Created2020-06-30
172981-Thumbnail Image.png
Description

In “Explaining Recent Declines in Adolescent Pregnancy in the United States: The Contribution of Abstinence and Improved Contraceptive Use,” hereafter “Explaining Recent Declines,” researchers John S. Santelli, Laura Duberstein Lindberg, Lawrence B. Finer, and Susheela Singh discuss what led to the major decline in US adolescent pregnancy rates from 1995

In “Explaining Recent Declines in Adolescent Pregnancy in the United States: The Contribution of Abstinence and Improved Contraceptive Use,” hereafter “Explaining Recent Declines,” researchers John S. Santelli, Laura Duberstein Lindberg, Lawrence B. Finer, and Susheela Singh discuss what led to the major decline in US adolescent pregnancy rates from 1995 to 2002. Working with the Guttmacher Institute, a reproductive health research organization, they found that the decline in US adolescent pregnancy rates between 1995 and 2002 was primarily due to improved contraceptive use. They published their article in 2007 after the US government had increased funding for abstinence-only education between 1998 and 2007. “Explaining Recent Declines” challenged US policies by asserting that there was minimal evidence to support abstinence-only sex education as the primary strategy to prevent adolescent pregnancy.

Created2021-02-15
172927-Thumbnail Image.png
Description

The Y-chromosome is one of a pair of chromosomes that determine the genetic sex of individuals in mammals, some insects, and some plants. In the nineteenth and twentieth centuries, the development of new microscopic and molecular techniques, including DNA sequencing, enabled scientists to confirm the hypothesis that chromosomes determine the

The Y-chromosome is one of a pair of chromosomes that determine the genetic sex of individuals in mammals, some insects, and some plants. In the nineteenth and twentieth centuries, the development of new microscopic and molecular techniques, including DNA sequencing, enabled scientists to confirm the hypothesis that chromosomes determine the sex of developing organisms. In an adult organism, the genes on the Y-chromosome help produce the male gamete, the sperm cell. Beginning in the 1980s, many studies of human populations used the Y-chromosome gene sequences to trace paternal lineages. In mammals, the Y-chromosomes contain the master-switch gene for sex determination, called the sex-determining region Y, or the SRY gene in humans. In most normal cases, if a fertilized egg cell, called a zygote, has the SRY gene, the zygote develops into an embryos that has male sex traits. If the zygote lacks the SRY gene or if the SRY gene is defective, the zygote develops into an embryo that has female sex traits.

Created2015-05-28
172856-Thumbnail Image.png
Description

In the early 1960s, John W. Saunders Jr., Mary T. Gasseling, and Lilyan C. Saunders in the US investigated how cells die in the developing limbs of chick embryos. They studied when and where in developing limbs many cells die, and they studied the functions of cell death in wing

In the early 1960s, John W. Saunders Jr., Mary T. Gasseling, and Lilyan C. Saunders in the US investigated how cells die in the developing limbs of chick embryos. They studied when and where in developing limbs many cells die, and they studied the functions of cell death in wing development. At a time when only a few developmental biologists studied cell death, or apoptosis, Saunders and his colleagues showed that researchers could use embryological experiments to uncover the causal mechanisms of apotosis. The researchers published many of their results in the 1962 paper 'Cellular death in morphogenesis of the avian wing.'

Created2014-03-07
172865-Thumbnail Image.png
Description

In 1987 Rebecca Louise Cann, Mark Stoneking, and Allan Charles Wilson published Mitochondrial DNA and Human Evolution in the journal Nature. The authors compared mitochondrial DNA from different human populations worldwide, and from those comparisons they argued that all human populations had a common ancestor in Africa around 200,000 years

In 1987 Rebecca Louise Cann, Mark Stoneking, and Allan Charles Wilson published Mitochondrial DNA and Human Evolution in the journal Nature. The authors compared mitochondrial DNA from different human populations worldwide, and from those comparisons they argued that all human populations had a common ancestor in Africa around 200,000 years ago. Mitochondria DNA (mtDNA) is a small circular genome found in the subcellular organelles, called mitochondria. Mitochondria are organelles found outside of the nucleus in the watery part of the cell, called cytoplasm, of most complex cells (eukaryotes). Cann, Stoneking and Wilson collected mtDNA from 147 individuals from five different human geographical populations. Cann, Stoneking, and Wilson used mtDNA sequences to study the genetic differences and migration patterns of the human population through female inheritance. Mammals inherit mitochondria and mtDNA from their mothers through the egg cell (oocyte), and mitochondria are responsible for several maternally inherited diseases.

Created2014-10-10
172886-Thumbnail Image.png
Description

Mitochondrial DNA (mtDNA) is located outside the nucleus in the liquid portion of the cell (cytoplasm) inside cellular organelles called Mitochondria. Mitochondria are located in all complex or eukaryotic cells, including plant, animal, fungi, and single celled protists, which contain their own mtDNA genome. In animals with a backbone, or

Mitochondrial DNA (mtDNA) is located outside the nucleus in the liquid portion of the cell (cytoplasm) inside cellular organelles called Mitochondria. Mitochondria are located in all complex or eukaryotic cells, including plant, animal, fungi, and single celled protists, which contain their own mtDNA genome. In animals with a backbone, or vertebrates, mtDNA is a double stranded, circular molecule that forms a circular genome, which ranges in size from sixteen to eighteen kilo-base pairs, depending on species. Each mitochondrion in a cell can have multiple copies of the mtDNA genome. In humans, the mature egg cell, or oocyte, contains the highest number of mitochondria among human cells, ranging from 100,000 to 600,000 mitochondria per cell, but each mitochondrion contains only one copy of mtDNA. In human embryonic development, the number of mitochondria, the content of mtDNA in each mitochondrion, and the subsequent mtDNA activity affects the production of the oocytes, fertilization of the oocytes, and early embryonic growth and development.

Created2014-12-19
Description

All cells that have a nucleus, including plant, animal, fungal cells, and most single-celled protists, also have mitochondria. Mitochondria are particles called organelles found outside the nucleus in a cell's cytoplasm. The main function of mitochondria is to supply energy to the cell, and therefore to the organism. The theory

All cells that have a nucleus, including plant, animal, fungal cells, and most single-celled protists, also have mitochondria. Mitochondria are particles called organelles found outside the nucleus in a cell's cytoplasm. The main function of mitochondria is to supply energy to the cell, and therefore to the organism. The theory for how mitochondria evolved, proposed by Lynn Margulis in the twentieth century, is that they were once free-living organisms. Around two billion years ago, mitochondria took up residence inside larger cells, in a process called endosymbiosis, becoming functional parts of those cells. Within each mitochondrion is the mitochondrial DNA (mtDNA), which is different from the DNA in the cell's nucleus (nDNA). Organisms inherit their mitochondria only from their mothers via egg cells (oocytes). Mitochondria contribute to the development of oocytes, the release of the oocyte from the ovary (ovulation), the union of oocyte and sperm (fertilization), all stages of embryo formation (embryogenesis), and growth of the embryo after fertilization.

Created2014-07-05
173897-Thumbnail Image.png
Description

Henrietta Lacks, born Loretta Pleasant, had terminal cervical cancer in 1951, and was diagnosed at The Johns Hopkins University in Baltimore, Maryland, where researchers collected and stored her cancer cells. Those cells went on to become the first immortal human cell line, which the researchers named HeLa. An immortal cell

Henrietta Lacks, born Loretta Pleasant, had terminal cervical cancer in 1951, and was diagnosed at The Johns Hopkins University in Baltimore, Maryland, where researchers collected and stored her cancer cells. Those cells went on to become the first immortal human cell line, which the researchers named HeLa. An immortal cell line is an atypical cluster of cells that continuously multiply on their own outside of the organism from which they came, often due to a mutation. Lacks’s cancer cells enabled scientists to study human cells outside of the human body, though that was controversial since she did not voluntarily donate her cells for such research. Science writer Rebecca Skloot chronicled Lacks’s life in her book, The Immortal Life of Henrietta Lacks, which became a movie in 2017. Lacks’s HeLa cell line has contributed to numerous biomedical research advancements and discoveries and her story has prompted legal and ethical debates over the rights that an individual has to their genetic material and tissue.

Created2020-10-09