This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 35
Filtering by

Clear all filters

173210-Thumbnail Image.png
Description

In June 2015, the Ethics Committee of the American Society for Reproductive Medicine, or ASRM, published “Use of reproductive technology for sex selection for nonmedical reasons” in Fertility and Sterility. In the report, the Committee presents arguments for and against the use of reproductive technology for sex selection for any

In June 2015, the Ethics Committee of the American Society for Reproductive Medicine, or ASRM, published “Use of reproductive technology for sex selection for nonmedical reasons” in Fertility and Sterility. In the report, the Committee presents arguments for and against the use of reproductive technology for sex selection for any reason besides avoiding sex-linked disorders, or genetic disorders that only affect a particular sex. When couples have no family history of a sex-linked disease, the use of reproductive technology for sex selection raises ethical questions about the application of sex selection technology to fulfill parental desires. “Use of reproductive technology for sex selection for nonmedical purposes” examines the ethical debate surrounding sex selection for nonmedical purposes and is an educational and ethical reference for physicians who are considering offering those services in their practices.

Created2019-05-27
173243-Thumbnail Image.png
Description

In February 1953, Linus Pauling and Robert Brainard Corey, two scientists working at the California Institute of Technology in Pasadena, California, proposed a structure for deoxyribonucleic acid, or DNA, in their article “A Proposed Structure for the Nucleic Acids,” henceforth “Nucleic Acids.” In the article, Pauling and Corey suggest a

In February 1953, Linus Pauling and Robert Brainard Corey, two scientists working at the California Institute of Technology in Pasadena, California, proposed a structure for deoxyribonucleic acid, or DNA, in their article “A Proposed Structure for the Nucleic Acids,” henceforth “Nucleic Acids.” In the article, Pauling and Corey suggest a model for nucleic acids, including DNA, that consisted of three nucleic acid strands wound together in a triple helix. “Nucleic Acids” was published in Proceedings of the National Academy of Sciences shortly after scientists came to the consensus that genes, the biological factors that control how organisms develop, contained DNA. Though scientists proved Pauling and Corey’s model incorrect, “Nucleic Acids” helped scientists understand DNA’s structure and function as genetic material.

Created2019-08-26
173114-Thumbnail Image.png
Description

In 2015, biologist Helena D. Zomer and colleagues published the review article “Mesenchymal and Induced Pluripotent Stem Cells: General Insights and Clinical Perspectives” or “Mesenchymal and Induced Pluripotent Stem Cells” in Stem Cells and Cloning: Advances and Applications. The authors reviewed the biology of three types of pluripotent stem cells,

In 2015, biologist Helena D. Zomer and colleagues published the review article “Mesenchymal and Induced Pluripotent Stem Cells: General Insights and Clinical Perspectives” or “Mesenchymal and Induced Pluripotent Stem Cells” in Stem Cells and Cloning: Advances and Applications. The authors reviewed the biology of three types of pluripotent stem cells, embryonic stem cells, or ESCs, mesenchymal stem cells, or MSCs, and induced pluripotent stem cells, or iPS cells. Pluripotent stem cells are a special cell type that can give rise to other types of cells and are essential for development. The authors describe the strengths and weaknesses of each type of stem cell for regenerative medicine applications. They state that both MSC and iPS types of stem cells have the potential to regenerate tissues among many other therapeutic possibilities. In their article, Zomer and colleagues review the potential for MSCs and iPS cells to reshape the field of regenerative and personal medicine.

Created2021-08-04
173123-Thumbnail Image.png
Description

In 2017, Angiolo Gadducci, Silvestro Carinelli, and Giovanni Aletti published, "Neuroendocrine Tumor of the Uterine Cervix: A Therapeutic Challenge for Gynecologic Oncologists," hereafter, "Neuroendocrine Tumor" in the journal, Gynecologic Oncology. The authors conducted a systematic review of existing literature that documented the symptoms, diagnosis, staging, treatment, and outcomes of women

In 2017, Angiolo Gadducci, Silvestro Carinelli, and Giovanni Aletti published, "Neuroendocrine Tumor of the Uterine Cervix: A Therapeutic Challenge for Gynecologic Oncologists," hereafter, "Neuroendocrine Tumor" in the journal, Gynecologic Oncology. The authors conducted a systematic review of existing literature that documented the symptoms, diagnosis, staging, treatment, and outcomes of women diagnosed with neuroendocrine tumors, or cervical NETs, which are tumors with cells similar to cells from both the hormonal and the nervous system. Based on high mortality rates and the rarity of cervical NET diagnoses, the authors conclude that cervical NETs present a challenge for physicians in terms of devising novel ideas for treatment. By compiling the treatment methods and resulting outcomes of different studies, the authors presented evidence that there is a need for new forms of treatment to reduce the number of women dying from cervical NETs each year.

Created2022-04-16
173144-Thumbnail Image.png
Description

William Thomas Astbury studied the structures of fibrous materials, including fabrics, proteins, and deoxyribonucleic acid, or DNA, in England during the twentieth century. Astbury employed X-ray crystallography, a technique in which scientists use X-rays to learn about the molecular structures of materials. Astbury worked at a time when scientists had

William Thomas Astbury studied the structures of fibrous materials, including fabrics, proteins, and deoxyribonucleic acid, or DNA, in England during the twentieth century. Astbury employed X-ray crystallography, a technique in which scientists use X-rays to learn about the molecular structures of materials. Astbury worked at a time when scientists had not yet identified DNA’s structure or function in genes, the genetic components responsible for how organisms develop and reproduce. He was one of the first scientists to use X-ray crystallography to study the structure of DNA. According to historians, Astbury helped establish the field of molecular biology as he connected microscopic changes in the structure of materials to changes in their large-scale properties. Astbury and his images helped scientists to understand the structure of DNA and its role in genetics.

Created2019-06-03
173198-Thumbnail Image.png
Description

Aristotle studied developing organisms, among other things, in ancient Greece, and his writings shaped Western philosophy and natural science for greater than two thousand years. He spent much of his life in Greece and studied with Plato at Plato's Academy in Athens, where he later established his own school called

Aristotle studied developing organisms, among other things, in ancient Greece, and his writings shaped Western philosophy and natural science for greater than two thousand years. He spent much of his life in Greece and studied with Plato at Plato's Academy in Athens, where he later established his own school called the Lyceum. Aristotle wrote greater than 150 treatises on subjects ranging from aesthetics, politics, ethics, and natural philosophy, which include physics and biology. Less than fifty of Aristotle's treatises persisted into the twenty-first century. In natural philosophy, later called natural science, Aristotle established methods for investigation and reasoning and provided a theory on how embryos generate and develop. He originated the theory that an organism develops gradually from undifferentiated material, later called epigenesis.

Created2016-07-07
173199-Thumbnail Image.png
Description

In 1944, Oswald Avery, Colin MacLeod, and Maclyn McCarty published an article in which they concluded that genes, or molecules that dictate how organisms develop, are made of deoxyribonucleic acid, or DNA. The article is titled “Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction

In 1944, Oswald Avery, Colin MacLeod, and Maclyn McCarty published an article in which they concluded that genes, or molecules that dictate how organisms develop, are made of deoxyribonucleic acid, or DNA. The article is titled “Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III,” hereafter “Transformation.” The authors isolated, purified, and characterized genes within bacteria and found evidence that those genes were made of DNA and not protein. Though scientists were initially skeptical that genes were made of DNA, they later recognized that the data reported in “Transformation” were clear evidence that DNA was genetic material, a revelation that furthered research about how organisms grow, develop, and pass on traits to offspring.

Created2019-07-08
173083-Thumbnail Image.png
Description

Vasovasostomy is a microsurgical procedure to restore fertility after vasectomy, a surgery that sterilizes the patient by severing the vas deferentia, the tubes that carry the sperm from the testes to the penis. After a vasectomy, a patient may have various reasons for wanting to reverse the procedure, such as

Vasovasostomy is a microsurgical procedure to restore fertility after vasectomy, a surgery that sterilizes the patient by severing the vas deferentia, the tubes that carry the sperm from the testes to the penis. After a vasectomy, a patient may have various reasons for wanting to reverse the procedure, such as new opportunities for having children or a new romantic partnership. A vasovasostomy involves reestablishing the flow of sperm through the vas deferens by reconnecting the severed ends of the tube. In 1919, in the United States, William C. Quinby performed the first recorded successful vasovasostomy. Modern improvements on the surgery have led to its adoption as a microsurgery, a procedure that involves a microscope and specialized microscopic instruments. Surgical research over the twentieth century into reconnecting a blocked vas deferens and the resulting microsurgical technique for vasovasostomy has provided a way for people to regain their fertility after a vasectomy.

Created2022-08-11
173097-Thumbnail Image.png
Description

No-scalpel vasectomy, or NSV or keyhole vasectomy, is a surgical method of sterilization that involves puncturing the skin of the scrotum to access the vas deferens, a tube that carries spermatozoa, or sperm, from the testes to the penis. The surgeon performing the procedure blocks the flow of sperm through

No-scalpel vasectomy, or NSV or keyhole vasectomy, is a surgical method of sterilization that involves puncturing the skin of the scrotum to access the vas deferens, a tube that carries spermatozoa, or sperm, from the testes to the penis. The surgeon performing the procedure blocks the flow of sperm through the vas deferens, sterilizing the patient. NSV is a less invasive procedure, as it does not use a scalpel to make a deep cut on sensitive scrotal tissue. Typically, urologists perform NSV with the purpose of rendering the patient sterile while not altering other functions of the testes, scrotum, and penis. Li Shunqiang developed the technique in China in 1974 as a less invasive method of vasectomy for male patients. Li’s development of NSV provided an alternative method to vasectomies that rely on making incisions into the scrotum with a blade. NSV gained wide use as a sterilization technique, providing a path for males to take greater responsibility for contraception and family planning.

Created2022-07-04