This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 30
Filtering by

Clear all filters

Description

Mary-Claire King studied genetics in the US in the twenty-first century. King identified two genes associated with the occurrence of breast cancer, breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2). King showed that mutated BRCA1 and BRCA2 genes cause two types of reproductive cancer, breast and ovarian cancer. Because

Mary-Claire King studied genetics in the US in the twenty-first century. King identified two genes associated with the occurrence of breast cancer, breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2). King showed that mutated BRCA1 and BRCA2 genes cause two types of reproductive cancer, breast and ovarian cancer. Because of King’s discovery, doctors can screen women for the inheritance of mutated BRCA1 and BRCA2 genes to evaluate their risks for breast and ovarian cancer. King also demonstrated the genetic similarities between chimpanzees and humans and helped to identify victims of human rights abuses using genetics. King's identification of the BRCA genes and their relationship to breast and ovarian cancer, both reproductive cancers, has allowed physicians to screen thousands of women for the genes and for those women to choose to undergo preventative cancer treatment to lower their risk of cancer.

Created2017-08-23
172861-Thumbnail Image.png
Description

Friedrich Tiedemann studied the anatomy of humans and animals in the nineteenth century in Germany. He published on zoological subjects, on the heart of fish, the anatomy of amphibians and echinoderms, and the lymphatic and respiratory system in birds. In addition to his zoological anatomy, Tiedemann, working with the chemist

Friedrich Tiedemann studied the anatomy of humans and animals in the nineteenth century in Germany. He published on zoological subjects, on the heart of fish, the anatomy of amphibians and echinoderms, and the lymphatic and respiratory system in birds. In addition to his zoological anatomy, Tiedemann, working with the chemist Leopold Gmelin, published about how the digestive system functioned. Towards the end of his career Tiedemann published a comparative anatomy of the brains of white Europeans, black Africans, and Orangutans, in which he argued that there were no appreciable differences between the structure of the brains of blacks, women, and white European men that would suggest they were intellectually different. Tiedemann also researched the embryonic development of the brain and circulatory systems of human fetuses.

Created2015-07-07
173270-Thumbnail Image.png
Description

Stafford Leak Warren studied nuclear medicine in the United States during the twentieth century. He used radiation to make images of the body for diagnosis or treatment and developed the mammogram, a breast imaging technique that uses low-energy X-rays to produce an image of breasts. Mammograms allow doctors to diagnose

Stafford Leak Warren studied nuclear medicine in the United States during the twentieth century. He used radiation to make images of the body for diagnosis or treatment and developed the mammogram, a breast imaging technique that uses low-energy X-rays to produce an image of breasts. Mammograms allow doctors to diagnose breast cancer in its early and most treatable stages. Warren was also a medical advisor to the Manhattan Project, the US government’s program to develop an atomic bomb during World War II, and he was responsible for the health and safety aspects of the Trinity Test, the first atomic bomb test in the US. Warren’s invention of the mammogram has allowed physicians to diagnose breast cancer in women during its most treatable stages, preventing deaths due to breast cancer.

Created2017-08-30
173937-Thumbnail Image.png
Description

Leonard Hayflick studied the processes by which cells age during the twentieth and twenty-first centuries in the United States. In 1961 at the Wistar Institute in the US, Hayflick researched a phenomenon later called the Hayflick Limit, or the claim that normal human cells can only divide forty to sixty

Leonard Hayflick studied the processes by which cells age during the twentieth and twenty-first centuries in the United States. In 1961 at the Wistar Institute in the US, Hayflick researched a phenomenon later called the Hayflick Limit, or the claim that normal human cells can only divide forty to sixty times before they cannot divide any further. Researchers later found that the cause of the Hayflick Limit is the shortening of telomeres, or portions of DNA at the ends of chromosomes that slowly degrade as cells replicate. Hayflick used his research on normal embryonic cells to develop a vaccine for polio, and from HayflickÕs published directions, scientists developed vaccines for rubella, rabies, adenovirus, measles, chickenpox and shingles.

Created2014-07-20
173755-Thumbnail Image.png
Description

Jacques Loeb experimented on embryos in Europe and the United States at the end of the nineteenth and beginning of the twentieth centuries. Among the first to study embryos through experimentation, Loeb helped found the new field of experimental embryology. Notably, Loeb showed scientists how to create artificial

Jacques Loeb experimented on embryos in Europe and the United States at the end of the nineteenth and beginning of the twentieth centuries. Among the first to study embryos through experimentation, Loeb helped found the new field of experimental embryology. Notably, Loeb showed scientists how to create artificial parthenogenesis, thus refuting the idea that spermatozoa alone were necessary to develop eggs into embryos and confirming the idea that the chemical constitution of embryos environment affected their development. Furthermore, Loeb' s work showed that scientists could manipulate materials in a laboratory to create, as he called the process, the beginning stages of life.

Created2009-06-10
173812-Thumbnail Image.png
Description

Jacques Loeb published "Mechanistic Science and Metaphysical Romance" in 1915. His goal for the article was to outline his conception of mechanistic science and its relation to other methods of inquiry. Loeb argued that mechanistic science was the foundation of knowledge and humanity's progress depended on it.

Jacques Loeb published "Mechanistic Science and Metaphysical Romance" in 1915. His goal for the article was to outline his conception of mechanistic science and its relation to other methods of inquiry. Loeb argued that mechanistic science was the foundation of knowledge and humanity's progress depended on it. Loeb's argument altered the account of science he offered in The Mechanistic Conception of Life insofar as scientists no longer aimed merely to control nature, but also to understand nature s underlying elements and their mechanical relations. Loeb relied on the results of his research into fish embryos and tropisms to bolster his argument.

Created2009-06-08
173813-Thumbnail Image.png
Description

Jacques Loeb developed procedures to make embryos from unfertilized sea urchin eggs in 1899. Loeb called the procedures "artificial parthenogenesis," and he introduced them and his results in "On the Nature of the Process of Fertilization and the Artificial Production of Norma Larvae (Plutei) from the Unfertilized Eggs of

Jacques Loeb developed procedures to make embryos from unfertilized sea urchin eggs in 1899. Loeb called the procedures "artificial parthenogenesis," and he introduced them and his results in "On the Nature of the Process of Fertilization and the Artificial Production of Norma Larvae (Plutei) from the Unfertilized Eggs of the Sea Urchin" in an 1899 issue of The American Journal of Physiology. In 1900 Loeb elaborated on his experiments. Following those publications, however, he discovered he had used inaccurately labeled salts and redid his experiments to determine the correct amount of salts needed for artificial parthenogenesis.

Created2010-06-10
173704-Thumbnail Image.png
Description

Jacques Loeb published The Organism as a Whole: From a Physicochemical Viewpoint in 1916. Loeb's goal for the book was to refute the claim that physics and chemistry were powerless to completely explain whole organisms and their seemingly goal-oriented component processes. Loeb used his new account of science

Jacques Loeb published The Organism as a Whole: From a Physicochemical Viewpoint in 1916. Loeb's goal for the book was to refute the claim that physics and chemistry were powerless to completely explain whole organisms and their seemingly goal-oriented component processes. Loeb used his new account of science and scientific explanation, marshaling evidence from his embryological researches, to show that physicochemical biology completely and correctly explained whole organisms and their component processes.

Created2010-05-06
173721-Thumbnail Image.png
Description

Jacques Loeb showed that scientists could achieve artificial parthenogenesis with some types of annelid worm eggs through a series of experiments in 1900. Loeb published the results of his experiments in 1901 as "Experiments on Artificial Parthenogenesis in Annelids (Chaetopterus) and the Nature of the Process of Fertilization," in

Jacques Loeb showed that scientists could achieve artificial parthenogenesis with some types of annelid worm eggs through a series of experiments in 1900. Loeb published the results of his experiments in 1901 as "Experiments on Artificial Parthenogenesis in Annelids (Chaetopterus) and the Nature of the Process of Fertilization," in The American Journal of Physiology. Loeb 's results broadened the range of animals to which artificial parthenogenesis applied beyond sea urchins. Scientists could now also cause artificial parthenogenesis with the eggs of Chaetopterus, a segmented marine worm.

Created2009-06-10
Description

In 2013, George Church and his colleagues at Harvard University in Cambridge, Massachusetts published RNA-Guided Human Genome Engineering via Cas 9, in which they detailed their use of RNA-guided Cas 9 to genetically modify genes in human cells. Researchers use RNA-guided Cas 9 technology to modify the genetic information of

In 2013, George Church and his colleagues at Harvard University in Cambridge, Massachusetts published RNA-Guided Human Genome Engineering via Cas 9, in which they detailed their use of RNA-guided Cas 9 to genetically modify genes in human cells. Researchers use RNA-guided Cas 9 technology to modify the genetic information of organisms, DNA, by targeting specific sequences of DNA and subsequently replacing those targeted sequences with different DNA sequences. Church and his team used RNA-guided Cas 9 technology to edit the genetic information in human cells. Church and his colleagues also created a database that identified 190,000 unique guide RNAs for targeting almost half of the human genome that codes for proteins. In RNA-Guided Human Genome Engineering via Cas 9, the authors demonstrated that RNA-guided Cas 9 was a robust and simple tool for genetic engineering, which has enabled scientists to more easily manipulate genomes for the study of biological processes and genetic diseases.

Created2017-12-27