This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 29
Filtering by

Clear all filters

172930-Thumbnail Image.png
Description

Harald zur Hausen studied viruses and discovered that certain strains of the human papilloma virus (HPV), a sexually transmitted disease, can cause cervical cancer, in Europe during the twentieth and twenty-first centuries. Zur Hausen spent his research career identifying the viruses that cause diseases, particularly cancer-causing viruses (oncoviruses). He primarily

Harald zur Hausen studied viruses and discovered that certain strains of the human papilloma virus (HPV), a sexually transmitted disease, can cause cervical cancer, in Europe during the twentieth and twenty-first centuries. Zur Hausen spent his research career identifying the viruses that cause diseases, particularly cancer-causing viruses (oncoviruses). He primarily focused on HPV and cervical cancer. Zur Hausen hypothesized that HPV was cancerous and discovered that two strains, HPV 16 and 18, caused cervical cancer. That discovery led to improved diagnosis of cervical cancer and the later development of the HPV vaccines, Gardasil and Cervarix. In 2008, zur Hausen won the Nobel Prize in Physiology or Medicine.

Created2017-07-24
173235-Thumbnail Image.png
Description

From 1977 to 1987, Harald zur Hausen led a team of researchers across several institutions in Germany to investigate whether the human papillomavirus (HPV) caused cervical cancer. Zur Hausen's first experiment tested the hypothesis that HPV caused cervical cancer rather than herpes simplex virus type 2 (HSV-2), the then accepted

From 1977 to 1987, Harald zur Hausen led a team of researchers across several institutions in Germany to investigate whether the human papillomavirus (HPV) caused cervical cancer. Zur Hausen's first experiment tested the hypothesis that HPV caused cervical cancer rather than herpes simplex virus type 2 (HSV-2), the then accepted cause. His second and third experiments detailed methods to identify two previously unidentified HPV strains, HPV 16 and HPV 18, in cervical cancer tumor samples. The experiments showed that HPV 16 and 18 DNA were present in cervical tumor samples. Zur Hausen concluded that HPV, not HSV-2, caused cervical cancer, which enabled researchers to develop preventions, such as the HPV vaccine.

Created2017-03-09
172861-Thumbnail Image.png
Description

Friedrich Tiedemann studied the anatomy of humans and animals in the nineteenth century in Germany. He published on zoological subjects, on the heart of fish, the anatomy of amphibians and echinoderms, and the lymphatic and respiratory system in birds. In addition to his zoological anatomy, Tiedemann, working with the chemist

Friedrich Tiedemann studied the anatomy of humans and animals in the nineteenth century in Germany. He published on zoological subjects, on the heart of fish, the anatomy of amphibians and echinoderms, and the lymphatic and respiratory system in birds. In addition to his zoological anatomy, Tiedemann, working with the chemist Leopold Gmelin, published about how the digestive system functioned. Towards the end of his career Tiedemann published a comparative anatomy of the brains of white Europeans, black Africans, and Orangutans, in which he argued that there were no appreciable differences between the structure of the brains of blacks, women, and white European men that would suggest they were intellectually different. Tiedemann also researched the embryonic development of the brain and circulatory systems of human fetuses.

Created2015-07-07
173056-Thumbnail Image.png
Description

In 2006, United States pharmaceutical company Merck released the Gardasil vaccination series, which protected recipients against four strains of Human Papillomaviruses, or HPV. HPV is a sexually transmitted infection which may be asymptomatic or cause symptoms such as genital warts, and is linked to cervical, vaginal, vulvar, anal, penile, head,

In 2006, United States pharmaceutical company Merck released the Gardasil vaccination series, which protected recipients against four strains of Human Papillomaviruses, or HPV. HPV is a sexually transmitted infection which may be asymptomatic or cause symptoms such as genital warts, and is linked to cervical, vaginal, vulvar, anal, penile, head, neck, and face cancers. In 2006, based on research conducted by researchers Ian Frazer and Jian Zhou in the 1990s, Merck released a four-strain version of Gardasil, which protected boys and girls aged nine and older against the major HPV strains HPV-6, HPV-11, HPV-16, and HPV-18. In 2014, Merck released Gardasil 9, a nine-strain version that protected from the original four HPV strains plus strains HPV-31, HPV-33, HPV-45, and HPV-58. Gardasil is a preventative measure and reduces the risk of contracting HPV and HPV-related cancers by up to ninety-seven percent.

Created2021-07-30
173937-Thumbnail Image.png
Description

Leonard Hayflick studied the processes by which cells age during the twentieth and twenty-first centuries in the United States. In 1961 at the Wistar Institute in the US, Hayflick researched a phenomenon later called the Hayflick Limit, or the claim that normal human cells can only divide forty to sixty

Leonard Hayflick studied the processes by which cells age during the twentieth and twenty-first centuries in the United States. In 1961 at the Wistar Institute in the US, Hayflick researched a phenomenon later called the Hayflick Limit, or the claim that normal human cells can only divide forty to sixty times before they cannot divide any further. Researchers later found that the cause of the Hayflick Limit is the shortening of telomeres, or portions of DNA at the ends of chromosomes that slowly degrade as cells replicate. Hayflick used his research on normal embryonic cells to develop a vaccine for polio, and from HayflickÕs published directions, scientists developed vaccines for rubella, rabies, adenovirus, measles, chickenpox and shingles.

Created2014-07-20
173755-Thumbnail Image.png
Description

Jacques Loeb experimented on embryos in Europe and the United States at the end of the nineteenth and beginning of the twentieth centuries. Among the first to study embryos through experimentation, Loeb helped found the new field of experimental embryology. Notably, Loeb showed scientists how to create artificial

Jacques Loeb experimented on embryos in Europe and the United States at the end of the nineteenth and beginning of the twentieth centuries. Among the first to study embryos through experimentation, Loeb helped found the new field of experimental embryology. Notably, Loeb showed scientists how to create artificial parthenogenesis, thus refuting the idea that spermatozoa alone were necessary to develop eggs into embryos and confirming the idea that the chemical constitution of embryos environment affected their development. Furthermore, Loeb' s work showed that scientists could manipulate materials in a laboratory to create, as he called the process, the beginning stages of life.

Created2009-06-10
173811-Thumbnail Image.png
Description

John Philip Trinkaus studied the processes of cell migration and gastrulation, especially in teleost fish, in the US during the twentieth century. Called Trink by his friends, his social confidence and work ethic combined to make him a prolific and decorated developmental biologist. His scientific contributions included investigations of several

John Philip Trinkaus studied the processes of cell migration and gastrulation, especially in teleost fish, in the US during the twentieth century. Called Trink by his friends, his social confidence and work ethic combined to make him a prolific and decorated developmental biologist. His scientific contributions included investigations of several different aspects of embryology.

Created2010-05-31
173812-Thumbnail Image.png
Description

Jacques Loeb published "Mechanistic Science and Metaphysical Romance" in 1915. His goal for the article was to outline his conception of mechanistic science and its relation to other methods of inquiry. Loeb argued that mechanistic science was the foundation of knowledge and humanity's progress depended on it.

Jacques Loeb published "Mechanistic Science and Metaphysical Romance" in 1915. His goal for the article was to outline his conception of mechanistic science and its relation to other methods of inquiry. Loeb argued that mechanistic science was the foundation of knowledge and humanity's progress depended on it. Loeb's argument altered the account of science he offered in The Mechanistic Conception of Life insofar as scientists no longer aimed merely to control nature, but also to understand nature s underlying elements and their mechanical relations. Loeb relied on the results of his research into fish embryos and tropisms to bolster his argument.

Created2009-06-08
173813-Thumbnail Image.png
Description

Jacques Loeb developed procedures to make embryos from unfertilized sea urchin eggs in 1899. Loeb called the procedures "artificial parthenogenesis," and he introduced them and his results in "On the Nature of the Process of Fertilization and the Artificial Production of Norma Larvae (Plutei) from the Unfertilized Eggs of

Jacques Loeb developed procedures to make embryos from unfertilized sea urchin eggs in 1899. Loeb called the procedures "artificial parthenogenesis," and he introduced them and his results in "On the Nature of the Process of Fertilization and the Artificial Production of Norma Larvae (Plutei) from the Unfertilized Eggs of the Sea Urchin" in an 1899 issue of The American Journal of Physiology. In 1900 Loeb elaborated on his experiments. Following those publications, however, he discovered he had used inaccurately labeled salts and redid his experiments to determine the correct amount of salts needed for artificial parthenogenesis.

Created2010-06-10
173704-Thumbnail Image.png
Description

Jacques Loeb published The Organism as a Whole: From a Physicochemical Viewpoint in 1916. Loeb's goal for the book was to refute the claim that physics and chemistry were powerless to completely explain whole organisms and their seemingly goal-oriented component processes. Loeb used his new account of science

Jacques Loeb published The Organism as a Whole: From a Physicochemical Viewpoint in 1916. Loeb's goal for the book was to refute the claim that physics and chemistry were powerless to completely explain whole organisms and their seemingly goal-oriented component processes. Loeb used his new account of science and scientific explanation, marshaling evidence from his embryological researches, to show that physicochemical biology completely and correctly explained whole organisms and their component processes.

Created2010-05-06