This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 17
Filtering by

Clear all filters

173888-Thumbnail Image.png
Description

"Induction and Patterning of the Primitive Streak, an Organizing Center of Gastrulation in the Amniote," (hereafter referred to as "Induction") examines the mechanisms underlying early amniote gastrulation and the formation of the primitive streak and midline axis. The review, authored by Takashi Mikawa and colleagues at Cornell University Medical College,

"Induction and Patterning of the Primitive Streak, an Organizing Center of Gastrulation in the Amniote," (hereafter referred to as "Induction") examines the mechanisms underlying early amniote gastrulation and the formation of the primitive streak and midline axis. The review, authored by Takashi Mikawa and colleagues at Cornell University Medical College, was published in Developmental Dynamics in 2004. The article primarily discusses chick embryos as a model organism for nonrodent amniote gastrulation, although it intermittently touches on nonamniote gastrulation for comparative purposes. "Induction" attempts to explain the initiation of cell differentiation and embryo organization, one of the most intriguing processes of embryology.

Created2011-04-14
173904-Thumbnail Image.png
Description

In 1914 Albert Niemann, a German pediatrician who primarily studied infant metabolism, published a description of an Ashkenazi Jewish infant with jaundice, nervous system and brain impairments, swollen lymph nodes (lymphadenopathy), and an enlarged liver and spleen (hepatosplenomegaly). He reported that these anatomical disturbances resulted in the premature death of

In 1914 Albert Niemann, a German pediatrician who primarily studied infant metabolism, published a description of an Ashkenazi Jewish infant with jaundice, nervous system and brain impairments, swollen lymph nodes (lymphadenopathy), and an enlarged liver and spleen (hepatosplenomegaly). He reported that these anatomical disturbances resulted in the premature death of the child at the age of eighteen months. After extensively studying the abnormal characteristics of the infant, Niemann came to the conclusion that the disease was a variant of Gaucher's disease. Gaucher's disease, described by the French dermatologist Philippe Gaucher in 1882, is a lipid storage disorder resulting in an excessive accumulation of lipids in the spleen, kidneys, liver, lungs, bone marrow, and brain. Niemann was able to connect the infant's disease to Gaucher's disease because it displayed similar symptoms: a noticeable accumulation of fatty substances in the brain, liver, and spleen.

Created2010-10-11
Description

Meiosis, the process by which sexually-reproducing organisms generate gametes (sex cells), is an essential precondition for the normal formation of the embryo. As sexually reproducing, diploid, multicellular eukaryotes, humans rely on meiosis to serve a number of important functions, including the promotion of genetic diversity and the creation of proper

Meiosis, the process by which sexually-reproducing organisms generate gametes (sex cells), is an essential precondition for the normal formation of the embryo. As sexually reproducing, diploid, multicellular eukaryotes, humans rely on meiosis to serve a number of important functions, including the promotion of genetic diversity and the creation of proper conditions for reproductive success. However, the primary function of meiosis is the reduction of the ploidy (number of chromosomes) of the gametes from diploid (2n, or two sets of 23 chromosomes) to haploid (1n or one set of 23 chromosomes). While parts of meiosis are similar to mitotic processes, the two systems of cellular division produce distinctly different outcomes. Problems during meiosis can stop embryonic development and sometimes cause spontaneous miscarriages, genetic errors, and birth defects such as Down syndrome.

Created2011-03-24
173805-Thumbnail Image.png
Description

Embryogenesis is an intricate process that can easily be disrupted by means of teratogenic agents. Some of these agents target the embryonic period's "window of susceptibility," three to eight weeks after a pregnant woman's last menstruation, when the highest degree of sensitivity to embryonic cell differentiation and organ formation occurs.

Embryogenesis is an intricate process that can easily be disrupted by means of teratogenic agents. Some of these agents target the embryonic period's "window of susceptibility," three to eight weeks after a pregnant woman's last menstruation, when the highest degree of sensitivity to embryonic cell differentiation and organ formation occurs. The embryonic period or critical period is when most organ systems form, whereas the fetal period, week eight to birth, involves the growth and modeling of the organ systems. During the window of susceptibility, teratogens such as thalidomide can severely damage critical milestones of embryonic development.

Created2010-09-12
173538-Thumbnail Image.png
Description

Bisphenol A (BPA) is an organic compound that was first synthesized by Aleksandr Dianin, a Russian chemist from St. Petersburg, in 1891. The chemical nomenclature of BPA is 2,2-bis (4-hydroxyphenyl) propane. The significance of this synthesized compound did not receive much attention until 1936, when two biochemists interested in endocrinology,

Bisphenol A (BPA) is an organic compound that was first synthesized by Aleksandr Dianin, a Russian chemist from St. Petersburg, in 1891. The chemical nomenclature of BPA is 2,2-bis (4-hydroxyphenyl) propane. The significance of this synthesized compound did not receive much attention until 1936, when two biochemists interested in endocrinology, Edward Dodds and William Lawson, discovered its ability to act as an estrogen agonist in ovariectomized, estrogen-deficient rats. Biochemists and endocrinologists found the results of Dodd and Lawson's experiment to be particularly important because at that early stage of research into hormones, it was still difficult to isolate naturally occurring hormones. Since then, BPA has proven to have complex developmental effects, but it has taken many researchers to sort out the details.

Created2010-09-07
173713-Thumbnail Image.png
Description

Estrogen plays a key role in the regulation of gene transcription. This is accomplished by its ability to act as a ligand and to bind to specific estrogen receptor (ER) molecules, such as ERα and ERβ, which act as nuclear transcription factors. There are three major nuclear estrogen receptor

Estrogen plays a key role in the regulation of gene transcription. This is accomplished by its ability to act as a ligand and to bind to specific estrogen receptor (ER) molecules, such as ERα and ERβ, which act as nuclear transcription factors. There are three major nuclear estrogen receptor protein domains: the estrogen binding domain, the protein interaction domain, and the DNA binding domain. The domain responsible for the regulation of transcription is the DNA binding domain, which binds to DNA sequences called estrogen-responsive elements (EREs), found in enhancer regions of specific genes. By the binding of estrogen or an estrogen mimic to these enhancers, the target genes become activated and the proteins produced are involved in numerous cellular processes. With an estrogen mimic or xenoestrogen, such as diethylstilbestrol (DES), the negative regulation of certain genes during embryonic development can be devastating to the developing anatomy, especially the reproductive system.

Created2010-09-12
172818-Thumbnail Image.png
Description

The Public Broadcasting Station (PBS) documentary Life's Greatest Miracle (abbreviated Miracle, available at http://www.pbs.org/wgbh/nova/miracle/program.html), is arguably one of the most vivid illustrations of the making of new human life. Presented as part of the PBS television series NOVA, Miracle is a little less than an hour long and was

The Public Broadcasting Station (PBS) documentary Life's Greatest Miracle (abbreviated Miracle, available at http://www.pbs.org/wgbh/nova/miracle/program.html), is arguably one of the most vivid illustrations of the making of new human life. Presented as part of the PBS television series NOVA, Miracle is a little less than an hour long and was first aired 20 November 2001. The program was written and produced by Julia Cort and features images by renowned Swedish photographer Lennart Nilsson. It comes as a sequel to the award-winning 1983 NOVA production, The Miracle of Life, which exhibits Nilsson's photography as well. The program showcases a combination of graphic animation, endoscopic and microscopic footage, as well as the story of a couple who are expecting a child. It features a number of new technological and scientific developments not present in its prequel, providing additional relevant information. By depicting human development in a clear and fresh manner, Miracle helps shed light on this indispensible aspect of life. Following is a description of the documentary, highlighting the key points of the film and explaining images featured in it.

Created2010-11-20
172905-Thumbnail Image.png
Description

Sir John Bertrand Gurdon further developed nuclear transplantation, the technique used to clone organisms and to create stem cells, while working in Britain in the second half of the twentieth century. Gurdon's research built on the work of Thomas King and Robert Briggs in the United States, who in 1952

Sir John Bertrand Gurdon further developed nuclear transplantation, the technique used to clone organisms and to create stem cells, while working in Britain in the second half of the twentieth century. Gurdon's research built on the work of Thomas King and Robert Briggs in the United States, who in 1952 published findings that indicated that scientists could take a nucleus from an early embryonic cell and successfully transfer it into an unfertilized and enucleated egg cell. Briggs and King also concluded that a nucleus taken from an adult cell and similarly inserted into an unfertilized enucleated egg cell could not produce normal development. In 1962, however, Gurdon published results that indicated otherwise. While Briggs and King worked with Rana pipiens frogs, Gurdon used the faster-growing species Xenopus laevis to show that nuclei from specialized cells still held the potential to be any cell despite its specialization. In 2012, the Nobel Prize Committee awarded Gurdon and Shinya Yamanaka its prize in physiology and medicine for for their work on cloning and pluripotent stem cells.

Created2012-10-11
173751-Thumbnail Image.png
Description

All sexually reproducing, multicellular diploid eukaryotes begin life as embryos. Understanding the stages of embryonic development is vital to explaining how eukaryotes form and how they are related on the tree of life. This understanding can also help answer questions related to morphology, ethics, medicine, and other pertinent fields of

All sexually reproducing, multicellular diploid eukaryotes begin life as embryos. Understanding the stages of embryonic development is vital to explaining how eukaryotes form and how they are related on the tree of life. This understanding can also help answer questions related to morphology, ethics, medicine, and other pertinent fields of study. In particular, the field of comparative embryology is concerned with documenting the stages of ontogeny. In the nineteenth century, embryologist Karl Ernst von Baer famously noted that embryos of different species generally start out with very similar structure and diverge as they progress through development. This similarity allows for the construction of a series of detailed stages exhibited by a range of different organisms (though in reality embryonic development is a continuous, not staggered, process) describing the progression of events that begin with conception.

Created2010-10-20
173862-Thumbnail Image.png
Description

The process of gastrulation allows for the formation of the germ layers in metazoan embryos, and is generally achieved through a series of complex and coordinated cellular movements. The process of gastrulation can be either diploblastic or triploblastic. In diploblastic organisms like cnidaria or ctenophora, only the endoderm and the

The process of gastrulation allows for the formation of the germ layers in metazoan embryos, and is generally achieved through a series of complex and coordinated cellular movements. The process of gastrulation can be either diploblastic or triploblastic. In diploblastic organisms like cnidaria or ctenophora, only the endoderm and the ectoderm form; in triploblastic organisms (most other complex metazoans), triploblastic gastrulation produces all three germ layers. The gastrula, the product of gastrulation, was named by Ernst Haeckel in the mid-1870s; the name comes from Latin, where gaster means stomach, and indeed the gut (archenteron) is one of the most distinctive features of the gastrula.

Created2011-03-10