This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 27
Filtering by

Clear all filters

173431-Thumbnail Image.png
Description

Boris Ephrussi and George Wells Beadle developed a transplantation technique on flies, Drosophila melanogaster, which they described in their 1936 article A Technique of Transplantation for Drosophila. The technique of injecting a tissue from one fly larva into another fly larva, using a micropipette, to grow that tissue in the

Boris Ephrussi and George Wells Beadle developed a transplantation technique on flies, Drosophila melanogaster, which they described in their 1936 article A Technique of Transplantation for Drosophila. The technique of injecting a tissue from one fly larva into another fly larva, using a micropipette, to grow that tissue in the second larvae, was a means for investigating development of Drosophila. Through this technique, Beadle and Ephrussi studied the role of genes in embryological processes. Beadle and Ephrussi were the first to apply the transplantation method, which had previously been used in the study of larger insects, to the smaller sized Drosophila. Beadle and Ephrussi used this method of transplantation to determine if parts of the optic disc, the section of a larvae that later become the eye buds in the adult, could be extracted from one larva and transplanted into another. They later built upon this research to relate the production of molecules in cells to gene function.

Created2014-06-29
172747-Thumbnail Image.png
Description

'On the Permanent Life of Tissues outside of the Organism' reports Alexis Carrel's 1912 experiments on the maintenance of tissue in culture media. At the time, Carrel was a French surgeon and biologist working at the Rockefeller Institute in New York City. In his paper, Carrel reported that he

'On the Permanent Life of Tissues outside of the Organism' reports Alexis Carrel's 1912 experiments on the maintenance of tissue in culture media. At the time, Carrel was a French surgeon and biologist working at the Rockefeller Institute in New York City. In his paper, Carrel reported that he had successfully maintained tissue cultures, which derived from connective tissues of developing chicks and other tissue sources, by serially culturing them. Among all the tissue cultures Carrel reported, one was maintained for more than two months, whereas previous efforts had only been able to keep tissues in vitro for three to fifteen days. Carrel’s experiments contributed to the development of long-term tissue culture techniques, which were useful in the study of embryology and eventually became instrumental in stem cell research. Despite later evidence to the contrary, Carrel believed that as long as the tissue culture method was accurately applied, tissues kept outside of the organisms should be able to divide indefinitely and have permanent life.

Created2012-05-06
173770-Thumbnail Image.png
Description

The p53 protein acts as a pivotal suppressor of inappropriate cell proliferation. By initiating suppressive effects through induction of apoptosis, cell senescence, or transient cell-cycle arrest, p53 plays an important role in cancer suppression, developmental regulation, and aging. Its discovery in 1979 was a product of research into viral etiology

The p53 protein acts as a pivotal suppressor of inappropriate cell proliferation. By initiating suppressive effects through induction of apoptosis, cell senescence, or transient cell-cycle arrest, p53 plays an important role in cancer suppression, developmental regulation, and aging. Its discovery in 1979 was a product of research into viral etiology and the immunology of cancer. The p53 protein was first identified in a study of the role of viruses in cancer through its ability to form a complex with viral tumor antigens. In the same year, an immunological study of cancer also found p53 due to its immunoreactivity with tumor antisera. Although a series of studies found p53 through various routes, and various researchers called it different names, it was eventually confirmed that they had all encountered the same protein, p53.

Created2011-01-21
Description

The one gene-one enzyme hypothesis, proposed by George Wells Beadle in the US in 1941, is the theory that each gene directly produces a single enzyme, which consequently affects an individual step in a metabolic pathway. In 1941, Beadle demonstrated that one gene in a fruit fly controlled a single,

The one gene-one enzyme hypothesis, proposed by George Wells Beadle in the US in 1941, is the theory that each gene directly produces a single enzyme, which consequently affects an individual step in a metabolic pathway. In 1941, Beadle demonstrated that one gene in a fruit fly controlled a single, specific chemical reaction in the fruit fly, which one enzyme controlled. In the 1950s, the theory that genes produce enzymes that control a single metabolic step was dubbed the one geneÐone enzyme hypothesis by Norman Horowitz, a professor at the California Institute of Technology (Caltech) and an associate of Beadle's. This concept helped researchers characterize genes as chemical molecules, and it helped them identify the functions of those molecules.

Created2014-05-23
Description

George Wells Beadle and Edward Lawrie Tatum's 1941 article Genetic Control of Biochemical Reactions in Neurospora detailed their experiments on how genes regulated chemical reactions, and how the chemical reactions in turn affected development in the organism. Beadle and Tatum experimented on Neurospora, a type of bread mold, and they

George Wells Beadle and Edward Lawrie Tatum's 1941 article Genetic Control of Biochemical Reactions in Neurospora detailed their experiments on how genes regulated chemical reactions, and how the chemical reactions in turn affected development in the organism. Beadle and Tatum experimented on Neurospora, a type of bread mold, and they concluded that mutations to genes affected the enzymes of organisms, a result that biologists later generalized to proteins, not just enzymes. Beadle and Tatum's experiments provided an early link between genetics and the field of molecular biology.

Created2014-06-11
172849-Thumbnail Image.png
Description

In a series of experiments between 1960 and 1965, Robert Geoffrey Edwards discovered how to make mammalian egg cells, or oocytes, mature outside of a female's body. Edwards, working at several research institutions in the UK during this period, studied in vitro fertilization (IVF) methods. He measured the conditions and

In a series of experiments between 1960 and 1965, Robert Geoffrey Edwards discovered how to make mammalian egg cells, or oocytes, mature outside of a female's body. Edwards, working at several research institutions in the UK during this period, studied in vitro fertilization (IVF) methods. He measured the conditions and timings for in vitro (out of the body) maturation of oocytes from diverse mammals including mice, rats, hamsters, pigs, cows, sheep, and rhesus monkeys, as well as humans. By 1965, he manipulated the maturation of mammalian oocytes in vitro, and discovered that the maturation process took about the same amount of time as maturation in the body, called in vivo. The timing of human oocyte maturation in vivo, extrapolated from Edwards's in vitro study, helped researchers calculate the timing for surgical removal of human eggs for IVF.

Created2014-08-18
172856-Thumbnail Image.png
Description

In the early 1960s, John W. Saunders Jr., Mary T. Gasseling, and Lilyan C. Saunders in the US investigated how cells die in the developing limbs of chick embryos. They studied when and where in developing limbs many cells die, and they studied the functions of cell death in wing

In the early 1960s, John W. Saunders Jr., Mary T. Gasseling, and Lilyan C. Saunders in the US investigated how cells die in the developing limbs of chick embryos. They studied when and where in developing limbs many cells die, and they studied the functions of cell death in wing development. At a time when only a few developmental biologists studied cell death, or apoptosis, Saunders and his colleagues showed that researchers could use embryological experiments to uncover the causal mechanisms of apotosis. The researchers published many of their results in the 1962 paper 'Cellular death in morphogenesis of the avian wing.'

Created2014-03-07
172857-Thumbnail Image.png
Description

George Wells Beadle studied corn, fruit flies, and funguses in the US during the twentieth century. These studies helped Beadle earn the 1958 Nobel Prize in Physiology or Medicine. Beadle shared the prize with Edward Tatum for their discovery that genes help regulate chemical processes in and between cells. This

George Wells Beadle studied corn, fruit flies, and funguses in the US during the twentieth century. These studies helped Beadle earn the 1958 Nobel Prize in Physiology or Medicine. Beadle shared the prize with Edward Tatum for their discovery that genes help regulate chemical processes in and between cells. This finding, initially termed the one gene-one enzyme hypothesis, helped scientists develop new techniques to study genes and DNA as molecules, not just as units of heredity between generations of organisms. By inducing mutations in organisms while they were in different embryonic stages, Beadle's work on Drosophila and Neurospora led to the analysis of the cell cycle and embryonic development processes.

Created2014-03-14
172894-Thumbnail Image.png
Description

St. George Jackson Mivart studied animals and worked in England during the nineteenth century. He also proposed a theory of organismal development that he called individuation, and he critiqued Charles Darwin's argument for evolution by natural selection. His work on prosimians, a group of primates excluding apes and monkeys, helped

St. George Jackson Mivart studied animals and worked in England during the nineteenth century. He also proposed a theory of organismal development that he called individuation, and he critiqued Charles Darwin's argument for evolution by natural selection. His work on prosimians, a group of primates excluding apes and monkeys, helped scientists better investigate the Primate group. In his work On the Genesis of Species, Mivart argued that Darwin's theory couldn't explain how specific organismal forms developed and varied, explanations Mivart argued were necessary before Darwin could invoke the mechanism of natural selection to explain the evolution of species. To provide those explanations Mivart proposed theories of individuation and of instinct.

Created2014-04-04
172762-Thumbnail Image.png
Description

Boris Ephrussi studied fruit flies, yeast, and mouse genetics and development while working in France and the US during the twentieth century. In yeast, Ephrussi studied how mutations in the cytoplasm persisted across generations. In mice he studied the genetics of hybrids and the development of cancer. Working with George

Boris Ephrussi studied fruit flies, yeast, and mouse genetics and development while working in France and the US during the twentieth century. In yeast, Ephrussi studied how mutations in the cytoplasm persisted across generations. In mice he studied the genetics of hybrids and the development of cancer. Working with George Wells Beadle on the causes of different eye colors in fruit flies, Ephrussi's research helped establish the one-gene-one-enzyme hypothesis. Ephrussi helped create new embryological techniques and contributed the theories of genetics and development.

Created2014-09-15