This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 37
Filtering by

Clear all filters

173927-Thumbnail Image.png
Description

Conrad Hal Waddington's "Experiments on Embryonic Induction III," published in 1934 in the Journal of Experimental Biology, describes the discovery that the primitive streak induces the mammalian embryo. Waddington's hypothesis was that a transplanted primitive streak could induce neural tissue in the ectoderm of the rabbit embryo. The

Conrad Hal Waddington's "Experiments on Embryonic Induction III," published in 1934 in the Journal of Experimental Biology, describes the discovery that the primitive streak induces the mammalian embryo. Waddington's hypothesis was that a transplanted primitive streak could induce neural tissue in the ectoderm of the rabbit embryo. The primitive streak defines the axis of an embryo and is capable of inducing the differentiation of various tissues in a developing embryo during gastrulation. In this experiment Waddington was, in fact, able to induce neural differentiation. Waddington noted that the tissue is "competent"; for a chick organizer, and by deduction a mammalian organizer must exist. Competence refers to a cell's ability to respond to an inducing signal, which is temporally limited to certain developmental stages. Waddington's initial work laid the foundation for many decades of research to follow, including further experiments by Waddington with the mammalian organizer.

Created2007-10-30
173889-Thumbnail Image.png
Description

Samuel Randall Detwiler was an embryologist who studied neural development in embryos and vertebrate retinas. He discovered evidence for the relationship between somites and spinal ganglia, that transplanted limbs can be controlled by foreign ganglia, and the plasticity of ganglia in response to limb transplantations. He also extensively

Samuel Randall Detwiler was an embryologist who studied neural development in embryos and vertebrate retinas. He discovered evidence for the relationship between somites and spinal ganglia, that transplanted limbs can be controlled by foreign ganglia, and the plasticity of ganglia in response to limb transplantations. He also extensively studied vertebrate retinas during and after embryonic development. Detwiler's work established many principles studied in later limb transplantation experiments and was identified by Viktor Hamburger as an important bridge between his and Ross Granville Harrison's research.

Created2007-11-01
173891-Thumbnail Image.png
Description

Edward B. Lewis studied embryonic development in Drosophila, including the discovery of the cis-trans test for recessive genes, and the identification of the bithorax complex and its role in development in Drosophila. He shared the 1995 Nobel Prize in Physiology or Medicine with Christiane Nüsslein-Volhard and Eric F. Wieschaus

Edward B. Lewis studied embryonic development in Drosophila, including the discovery of the cis-trans test for recessive genes, and the identification of the bithorax complex and its role in development in Drosophila. He shared the 1995 Nobel Prize in Physiology or Medicine with Christiane Nüsslein-Volhard and Eric F. Wieschaus for work on genetic control of early embryonic development.

Created2007-11-11
173912-Thumbnail Image.png
Description

Stanley Cohen is a biochemist who participated in the discovery of nerve growth factor (NGF) and epidermal growth factor (EGF). He shared the 1986 Nobel Prize in Physiology or Medicine with Rita Levi-Montalcini for their work on the discovery of growth factors. His work led to the discovery of many

Stanley Cohen is a biochemist who participated in the discovery of nerve growth factor (NGF) and epidermal growth factor (EGF). He shared the 1986 Nobel Prize in Physiology or Medicine with Rita Levi-Montalcini for their work on the discovery of growth factors. His work led to the discovery of many other growth factors and their roles in development.

Created2007-11-01
173213-Thumbnail Image.png
Description

William Thornton Mustard was a surgeon in Canada during the twentieth century who developed surgical techniques to treat children who had congenital heart defects. Mustard has two surgeries named after him, both of which he helped to develop. The first of these surgeries replaces damaged or paralyzed muscles in individuals

William Thornton Mustard was a surgeon in Canada during the twentieth century who developed surgical techniques to treat children who had congenital heart defects. Mustard has two surgeries named after him, both of which he helped to develop. The first of these surgeries replaces damaged or paralyzed muscles in individuals who have polio, a virus that can cause paralysis. The other technique corrects a condition called the transposition of the great arteries (TGA) that is noticed at birth. Surgeons worldwide adopted that technique, leading to increased survival rates in infants afflicted with the condition. Mustard also published over 100 articles on congenital heart defects, surgical techniques, and the preparation of an artificial heart lung machine. Mustard helped perform the first blood transfusion of a newborn whose red blood cells (RBCs) had degraded, a condition called hemolytic anemia. Throughout his career, Mustard developed surgical techniques that increased the survival rates of infants and children with congenital and developmental disorders.

Created2017-02-11
173319-Thumbnail Image.png
Description

Ignaz Philipp Semmelweis demonstrated that the use of disinfectants could reduce the occurrence of puerperal fever in patients in nineteenth century Austria. Puerperal fever is a bacterial infection that can occur in the uterine tract of women after giving birth or undergoing an abortion. Semmelweis determined that puerperal fever is

Ignaz Philipp Semmelweis demonstrated that the use of disinfectants could reduce the occurrence of puerperal fever in patients in nineteenth century Austria. Puerperal fever is a bacterial infection that can occur in the uterine tract of women after giving birth or undergoing an abortion. Semmelweis determined that puerperal fever is contagious and argued that the unhygienic practices of physicians, like examining patients after performing autopsies, caused the spread of puerperal fever. He showed that if physicians washed their hands with a chloride solution before they attended patients, then they prevented those patients from developing puerperal fever. Despite being widely criticized during his lifetime, Semmelweis's research on the contagiousness of puerperal fever set a precedent for many scientists, and contributed to preventing the spread of puerperal fever.

Created2017-04-06
173285-Thumbnail Image.png
Description

Conrad Hal Waddington was an embryologist and theoretical biologist. His early experimental work investigated aspects of embryonic induction and the properties of the organizer first identified by Hans Spemann and Hilde Mangold, while his later studies focused on genetic assimilation. Waddington is probably best known for developing the

Conrad Hal Waddington was an embryologist and theoretical biologist. His early experimental work investigated aspects of embryonic induction and the properties of the organizer first identified by Hans Spemann and Hilde Mangold, while his later studies focused on genetic assimilation. Waddington is probably best known for developing the concept of the epigenetic landscape, and he also held significant interest in many different areas ranging from the visual arts and poetry to philosophy. Throughout his career, Waddington maintained that the arts were integral to science, and he continued to draw inspiration from the arts for his own work.

Created2007-11-08
Description

Transposition of the great arteries or TGA is a potentially fatal congenital heart malformation where the pulmonary artery and the aorta are switched. The switch means that the aorta, which normally carries oxygenated blood, carries deoxygenated blood. There are two types of the malformation, d-TGA where no oxygen reaches the

Transposition of the great arteries or TGA is a potentially fatal congenital heart malformation where the pulmonary artery and the aorta are switched. The switch means that the aorta, which normally carries oxygenated blood, carries deoxygenated blood. There are two types of the malformation, d-TGA where no oxygen reaches the body and l-TGA where some oxygenated blood circulates. In the US, the Centers for Disease Control estimate that about 1,901 infants are born each year with TGA, or about one for every 2,000 births. Throughout history, physicians classified TGA as a condition that causes blue babies and hypothesized it was a fatal condition. With the development of corrective surgeries, studies on the causes of TGA, and improved prenatal diagnosis have allowed for the survival rate for those with TGA to approach almost one hundred percent.

Created2017-03-02
173376-Thumbnail Image.png
Description

Adib Jatene in Brazil was the first surgeon to successfully perform the arterial switch operation in 1975. The operation corrected a heart condition in infants called transposition of the great arteries (TGA). Left untreated, infants with TGA die, as their blood cannot supply oxygen to their bodies. Jatene’s operation became

Adib Jatene in Brazil was the first surgeon to successfully perform the arterial switch operation in 1975. The operation corrected a heart condition in infants called transposition of the great arteries (TGA). Left untreated, infants with TGA die, as their blood cannot supply oxygen to their bodies. Jatene’s operation became widely used to correct the condition. Aside from medical research, Jatene worked for years in politics and education, serving as Brazil’s minister of health and teaching thoracic surgery at the University of São Paulo.

Created2017-04-20
173389-Thumbnail Image.png
Description

The arterial switch operation, also called the Jatene procedure, is an operation in which surgeons redirect the flow of blood through abnormal hearts. In 1975, Adib Jatene conducted the first successful arterial switch operation on a human infant. The arterial switch operation corrects a condition called transposition of the great

The arterial switch operation, also called the Jatene procedure, is an operation in which surgeons redirect the flow of blood through abnormal hearts. In 1975, Adib Jatene conducted the first successful arterial switch operation on a human infant. The arterial switch operation corrects a condition called transposition of the great arteries, abbreviated TGA, also called transposition of the great vessels, abbreviated TGV. TGA occurs when the pulmonary artery, which supplies deoxygenated blood to the lungs, and the aorta, which takes oxygenated blood to the body, are switched, or transposed. The switch between the aorta and pulmonary artery results in dangerously low levels of oxygen, a condition called cyanosis, in newborn infants, which causes them to die if a surgeon does not correct it.

Created2017-05-27