This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 17
Filtering by

Clear all filters

173213-Thumbnail Image.png
Description

William Thornton Mustard was a surgeon in Canada during the twentieth century who developed surgical techniques to treat children who had congenital heart defects. Mustard has two surgeries named after him, both of which he helped to develop. The first of these surgeries replaces damaged or paralyzed muscles in individuals

William Thornton Mustard was a surgeon in Canada during the twentieth century who developed surgical techniques to treat children who had congenital heart defects. Mustard has two surgeries named after him, both of which he helped to develop. The first of these surgeries replaces damaged or paralyzed muscles in individuals who have polio, a virus that can cause paralysis. The other technique corrects a condition called the transposition of the great arteries (TGA) that is noticed at birth. Surgeons worldwide adopted that technique, leading to increased survival rates in infants afflicted with the condition. Mustard also published over 100 articles on congenital heart defects, surgical techniques, and the preparation of an artificial heart lung machine. Mustard helped perform the first blood transfusion of a newborn whose red blood cells (RBCs) had degraded, a condition called hemolytic anemia. Throughout his career, Mustard developed surgical techniques that increased the survival rates of infants and children with congenital and developmental disorders.

Created2017-02-11
173319-Thumbnail Image.png
Description

Ignaz Philipp Semmelweis demonstrated that the use of disinfectants could reduce the occurrence of puerperal fever in patients in nineteenth century Austria. Puerperal fever is a bacterial infection that can occur in the uterine tract of women after giving birth or undergoing an abortion. Semmelweis determined that puerperal fever is

Ignaz Philipp Semmelweis demonstrated that the use of disinfectants could reduce the occurrence of puerperal fever in patients in nineteenth century Austria. Puerperal fever is a bacterial infection that can occur in the uterine tract of women after giving birth or undergoing an abortion. Semmelweis determined that puerperal fever is contagious and argued that the unhygienic practices of physicians, like examining patients after performing autopsies, caused the spread of puerperal fever. He showed that if physicians washed their hands with a chloride solution before they attended patients, then they prevented those patients from developing puerperal fever. Despite being widely criticized during his lifetime, Semmelweis's research on the contagiousness of puerperal fever set a precedent for many scientists, and contributed to preventing the spread of puerperal fever.

Created2017-04-06
Description

Transposition of the great arteries or TGA is a potentially fatal congenital heart malformation where the pulmonary artery and the aorta are switched. The switch means that the aorta, which normally carries oxygenated blood, carries deoxygenated blood. There are two types of the malformation, d-TGA where no oxygen reaches the

Transposition of the great arteries or TGA is a potentially fatal congenital heart malformation where the pulmonary artery and the aorta are switched. The switch means that the aorta, which normally carries oxygenated blood, carries deoxygenated blood. There are two types of the malformation, d-TGA where no oxygen reaches the body and l-TGA where some oxygenated blood circulates. In the US, the Centers for Disease Control estimate that about 1,901 infants are born each year with TGA, or about one for every 2,000 births. Throughout history, physicians classified TGA as a condition that causes blue babies and hypothesized it was a fatal condition. With the development of corrective surgeries, studies on the causes of TGA, and improved prenatal diagnosis have allowed for the survival rate for those with TGA to approach almost one hundred percent.

Created2017-03-02
173376-Thumbnail Image.png
Description

Adib Jatene in Brazil was the first surgeon to successfully perform the arterial switch operation in 1975. The operation corrected a heart condition in infants called transposition of the great arteries (TGA). Left untreated, infants with TGA die, as their blood cannot supply oxygen to their bodies. Jatene’s operation became

Adib Jatene in Brazil was the first surgeon to successfully perform the arterial switch operation in 1975. The operation corrected a heart condition in infants called transposition of the great arteries (TGA). Left untreated, infants with TGA die, as their blood cannot supply oxygen to their bodies. Jatene’s operation became widely used to correct the condition. Aside from medical research, Jatene worked for years in politics and education, serving as Brazil’s minister of health and teaching thoracic surgery at the University of São Paulo.

Created2017-04-20
172713-Thumbnail Image.png
Description

Edward Donnall Thomas, an American physician and scientist, gained recognition in the scientific community for conducting the first bone marrow transplant, a pioneering form of hematopoietic stem cell transplantation (HSCT). Bone marrow transplants are considered to be the first successful example of tissue engineering, a field within regenerative medicine that

Edward Donnall Thomas, an American physician and scientist, gained recognition in the scientific community for conducting the first bone marrow transplant, a pioneering form of hematopoietic stem cell transplantation (HSCT). Bone marrow transplants are considered to be the first successful example of tissue engineering, a field within regenerative medicine that uses hematopoietic stem cells (HSCs) as a vehicle for treatment. Prior to Thomas's groundbreaking work, most blood-borne diseases, including certain inherited and autoimmune diseases, were considered lethal.

Created2010-11-19
173389-Thumbnail Image.png
Description

The arterial switch operation, also called the Jatene procedure, is an operation in which surgeons redirect the flow of blood through abnormal hearts. In 1975, Adib Jatene conducted the first successful arterial switch operation on a human infant. The arterial switch operation corrects a condition called transposition of the great

The arterial switch operation, also called the Jatene procedure, is an operation in which surgeons redirect the flow of blood through abnormal hearts. In 1975, Adib Jatene conducted the first successful arterial switch operation on a human infant. The arterial switch operation corrects a condition called transposition of the great arteries, abbreviated TGA, also called transposition of the great vessels, abbreviated TGV. TGA occurs when the pulmonary artery, which supplies deoxygenated blood to the lungs, and the aorta, which takes oxygenated blood to the body, are switched, or transposed. The switch between the aorta and pulmonary artery results in dangerously low levels of oxygen, a condition called cyanosis, in newborn infants, which causes them to die if a surgeon does not correct it.

Created2017-05-27
173718-Thumbnail Image.png
Description

Tissue engineering is a field of regenerative medicine that integrates the knowledge of scientists, physicians, and engineers into the construction or reconstruction of human tissue. Practitioners of tissue engineering seek to repair, replace, maintain, and enhance the abilities of a specific tissue or organ by means of living cells. More

Tissue engineering is a field of regenerative medicine that integrates the knowledge of scientists, physicians, and engineers into the construction or reconstruction of human tissue. Practitioners of tissue engineering seek to repair, replace, maintain, and enhance the abilities of a specific tissue or organ by means of living cells. More often than not stem cells are the form of living cells used in this technology. Tissue engineering is one of the disciplines involved in translating knowledge of developmental biology into the clinical setting. One focus that this field has taken is the understanding of tissue and organ development during embryogenesis, as this knowledge will open avenues to new applications of this technology.

Created2010-10-29
173776-Thumbnail Image.png
Description

The purpose of regenerative medicine, especially tissue engineering, is to replace damaged tissue with new tissue that will allow the body to resume normal function. The uniqueness of tissue engineering is that it can restore normal structure in addition to repairing tissue function, and is often accomplished using stem cells.

The purpose of regenerative medicine, especially tissue engineering, is to replace damaged tissue with new tissue that will allow the body to resume normal function. The uniqueness of tissue engineering is that it can restore normal structure in addition to repairing tissue function, and is often accomplished using stem cells. The first type of tissue engineering using stem cells was hematopoietic stem cell transplantation (HSCT), a surgical procedure in which hematopoietic stem cells (HSCs) are infused into a host to treat a variety of blood diseases, cancers, and immunodeficiencies. While there is a standard procedure for the infusion of these cells into a donor, variations in the sources of hematopoietic stem cells, and in the relationship between donor and recipient, do produce some variability in the procedure.

Created2010-10-11
173865-Thumbnail Image.png
Description

The discovery of hematopoietic stem cells (HSCs) provided a pioneering step in stem cell research. HSCs are a type of multipotent adult stem cell, characterized by their ability to self-renew and differentiate into erythrocyte (red blood cell) and leukocyte (white blood cell) cell lineages. In terms of function, these cells

The discovery of hematopoietic stem cells (HSCs) provided a pioneering step in stem cell research. HSCs are a type of multipotent adult stem cell, characterized by their ability to self-renew and differentiate into erythrocyte (red blood cell) and leukocyte (white blood cell) cell lineages. In terms of function, these cells are responsible for the continual renewal of the erythrocytes, leukocytes, and platelets in the body through a process called hematopoiesis. They also play an important role in the formation of vital organs such as the liver and spleen during fetal development. The early biological knowledge obtained from the studies of HSCs established the base of knowledge for understanding other stem cell systems. In addition, these cells have a vital role in furthering stem cell research for clinical applications. Regenerative medicine is a field of medicine that has applied HSCs to the treatment of blood-borne diseases such as leukemia and lymphoma and of cancer patients undergoing chemotherapy.

Created2010-10-11
173876-Thumbnail Image.png
Description

Renowned physician and scientist William Harvey is best known for his accurate description of how blood circulates through the body. While his published work on the circulation of blood is considered the most important of his academic life, Harvey also made significant contributions to embryology with the publication of his

Renowned physician and scientist William Harvey is best known for his accurate description of how blood circulates through the body. While his published work on the circulation of blood is considered the most important of his academic life, Harvey also made significant contributions to embryology with the publication of his book Exercitationes de Generatione Animalium in 1651. In this book he established several theories that would set the stage for modern embryology and addressed many embryological issues including conception, embryogenesis, and spontaneous generation.

Created2010-06-18