This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 21
Filtering by

Clear all filters

173320-Thumbnail Image.png
Description

Stephen Jay Gould studied snail fossils and worked at Harvard University in Cambridge, Massachusetts during the latter half of the twentieth century. He contributed to philosophical, historical, and scientific ideas in paleontology, evolutionary theory, and developmental biology. Gould, with Niles Eldredge, proposed the theory of punctuated equilibrium, a view of

Stephen Jay Gould studied snail fossils and worked at Harvard University in Cambridge, Massachusetts during the latter half of the twentieth century. He contributed to philosophical, historical, and scientific ideas in paleontology, evolutionary theory, and developmental biology. Gould, with Niles Eldredge, proposed the theory of punctuated equilibrium, a view of evolution by which species undergo long periods of stasis followed by rapid changes over relatively short periods instead of continually accumulating slow changes over millions of years. In his 1977 book, Ontogeny and Phylogeny, Gould reconstructed a history of developmental biology and stressed the importance of development to evolutionary biology. In a 1979 paper coauthored with Richard Lewontin, Gould and Lewonitn criticized many evolutionary bioligists for relying solely on adaptive evolution as an explanation for morphological change, and for failing to consider other explanations, such as developmental constraints.

Created2014-02-18
172713-Thumbnail Image.png
Description

Edward Donnall Thomas, an American physician and scientist, gained recognition in the scientific community for conducting the first bone marrow transplant, a pioneering form of hematopoietic stem cell transplantation (HSCT). Bone marrow transplants are considered to be the first successful example of tissue engineering, a field within regenerative medicine that

Edward Donnall Thomas, an American physician and scientist, gained recognition in the scientific community for conducting the first bone marrow transplant, a pioneering form of hematopoietic stem cell transplantation (HSCT). Bone marrow transplants are considered to be the first successful example of tissue engineering, a field within regenerative medicine that uses hematopoietic stem cells (HSCs) as a vehicle for treatment. Prior to Thomas's groundbreaking work, most blood-borne diseases, including certain inherited and autoimmune diseases, were considered lethal.

Created2010-11-19
172876-Thumbnail Image.png
Description

Ontogeny and Phylogeny is a book published in 1977, in which the author Stephen J. Gould, who worked in the US, tells a history of the theory of recapitulation. A theory of recapitulation aims to explain the relationship between the embryonic development of an organism (ontogeny) and the evolution of

Ontogeny and Phylogeny is a book published in 1977, in which the author Stephen J. Gould, who worked in the US, tells a history of the theory of recapitulation. A theory of recapitulation aims to explain the relationship between the embryonic development of an organism (ontogeny) and the evolution of that organism's species (phylogeny). Although there are several variations of recapitulationist theories, most claim that during embryonic development an organism repeats the adult stages of organisms from those species in it's evolutionary history. Gould suggests that, although fewer biologists invoked recapitulation theories in the twentieth century compared to those in the nineteenth and eighteenth centuries, some aspects of the theory of recapitulation remained important for understanding evolution. Gould notes that the concepts of acceleration and retardation during development entail that changes in developmental timing (heterochrony) can result in a trait appearing either earlier or later than normal in developmental processes. Gould argues that these changes in the timing of embryonic development provide the raw materials or novelties upon which natural selection acts.

Created2014-10-21
172880-Thumbnail Image.png
Description

The Spandrels of San Marco and the Panglossian Paradigm:
A Critique of the Adaptationist Programme, hereafter called
The Spandrels, is an article written by Stephen J. Gould and
Richard C. Lewontin published in the Proceedings of the Royal
Society of London in 1979. The paper emphasizes

The Spandrels of San Marco and the Panglossian Paradigm:
A Critique of the Adaptationist Programme, hereafter called
The Spandrels, is an article written by Stephen J. Gould and
Richard C. Lewontin published in the Proceedings of the Royal
Society of London in 1979. The paper emphasizes issues with
what the two authors call adaptationism or the adaptationist
programme as a framework to explain how species and traits evolved. The paper
is one in a series of works in which Gould emphasized the
role of development in evolutionary theories. The article suggests
that constraints on how organisms can develop and constraints on how species can evolve from others play a
central role in explaining the how species and traits evolve. The
authors note that organisms from different species develop as
embryos through stages similar across species, genera, and higher
classes. Gould and Lewontin hypothesize that those stages
constrained the possible pathways of evolution and has therefore
guided the history of life. Throughout the paper, the authors rely on analogy of some parts of organisms to architectural structures called spandrels, marked in this image as 'a'."

Created2014-11-14
172767-Thumbnail Image.png
Description

The biogenetic law is a theory of development and evolution proposed by Ernst Haeckel in Germany in the 1860s. It is one of several recapitulation theories, which posit that the stages of development for an animal embryo are the same as other animals' adult stages or forms. Commonly stated as

The biogenetic law is a theory of development and evolution proposed by Ernst Haeckel in Germany in the 1860s. It is one of several recapitulation theories, which posit that the stages of development for an animal embryo are the same as other animals' adult stages or forms. Commonly stated as ontogeny recapitulates phylogeny, the biogenetic law theorizes that the stages an animal embryo undergoes during development are a chronological replay of that species' past evolutionary forms. The biogenetic law states that each embryo's developmental stage represents an adult form of an evolutionary ancestor. According to the law, by studying the stages of embryological development, one is, in effect, studying the history and diversification of life on Earth. The biogenetic law implied that researchers could study evolutionary relationships between taxa by comparing the developmental stages of embryos for organisms from those taxa. Furthermore, the evidence from embryology supported the theory that all of species on Earth share a common ancestor.

Created2014-05-03
172776-Thumbnail Image.png
Description

Neurocristopathies are a class of pathologies in vertebrates,
including humans, that result from abnormal expression, migration,
differentiation, or death of neural crest cells (NCCs) during embryonic development. NCCs are cells
derived from the embryonic cellular structure called the neural crest.
Abnormal NCCs can cause a neurocristopathy by chemically affecting the

Neurocristopathies are a class of pathologies in vertebrates,
including humans, that result from abnormal expression, migration,
differentiation, or death of neural crest cells (NCCs) during embryonic development. NCCs are cells
derived from the embryonic cellular structure called the neural crest.
Abnormal NCCs can cause a neurocristopathy by chemically affecting the
development of the non-NCC tissues around them. They can also affect the
development of NCC tissues, causing defective migration or
proliferation of the NCCs. There are many neurocristopathies
that affect many different types of systems. Some neurocristopathies
result in albinism (piebaldism) and cleft palate in humans. Various
pigment, skin, thyroid, and hearing disorders, craniofacial and heart
abnormalities, malfunctions of the digestive tract, and tumors can be
classified as neurocristopathies. This classification ties a variety of
disorders to one embryonic origin.

Created2014-09-19
172777-Thumbnail Image.png
Description

Early in the process of development, vertebrate embryos develop a fold on the neural plate where the neural and epidermal ectoderms meet, called the neural crest. The neural crest produces neural crest cells (NCCs), which become multiple different cell types and contribute to tissues and organs as an embryo develops.

Early in the process of development, vertebrate embryos develop a fold on the neural plate where the neural and epidermal ectoderms meet, called the neural crest. The neural crest produces neural crest cells (NCCs), which become multiple different cell types and contribute to tissues and organs as an embryo develops. A few of the organs and tissues include peripheral and enteric (gastrointestinal) neurons and glia, pigment cells, cartilage and bone of the cranium and face, and smooth muscle. The diversity of NCCs that the neural crest produces has led researchers to propose the neural crest as a fourth germ layer, or one of the primary cellular structures in early embryos from which all adult tissues and organs arise. Furthermore, evolutionary biologists study the neural crest because it is a novel shared evolutionary character (synapomorphy) of all vertebrates.

Created2014-09-15
172784-Thumbnail Image.png
Description

In 1828, while working at the University of Konigsberg in Konigsberg, Germany Karl Ernst von Baer proposed four laws of animal development, which came to be called von Baer's laws of embryology. With these laws, von Baer described the development (ontogeny) of animal embryos while also critiquing popular theories of

In 1828, while working at the University of Konigsberg in Konigsberg, Germany Karl Ernst von Baer proposed four laws of animal development, which came to be called von Baer's laws of embryology. With these laws, von Baer described the development (ontogeny) of animal embryos while also critiquing popular theories of animal development at the time. Von Baer's laws of embryology provided a framework to research the relationships and patterns between the development of different classes of organisms, and the patterns between this development and the diversification of species on Earth (phylogeny).

Created2014-04-15
172789-Thumbnail Image.png
Description

Franz Keibel studied the embryos of humans and other animals in Europe at the turn of the twentieth century. He lived and worked in several different parts of Germany and France. Keibel drew illustrations of embryos in many stages of development. Keibel used these illustrations, which he and others in

Franz Keibel studied the embryos of humans and other animals in Europe at the turn of the twentieth century. He lived and worked in several different parts of Germany and France. Keibel drew illustrations of embryos in many stages of development. Keibel used these illustrations, which he and others in the scientific community called normal plates, to describe the development of organisms in several species of vertebrates. His illustrations are published in the sixteen-volume text Normentafeln zur Entwicklungsgeschichte der Wirbelthiere (Normal Plates of the Developmental history of Vertebrates), published in 1895, and in the Manual of Human Embryology, which he edited with Franklin Paine Mall of the US, published in 1912. Keibel's plates showed human embryos in different stages of development between the twelfth day and the second month after fertilization.

Created2014-06-21
173718-Thumbnail Image.png
Description

Tissue engineering is a field of regenerative medicine that integrates the knowledge of scientists, physicians, and engineers into the construction or reconstruction of human tissue. Practitioners of tissue engineering seek to repair, replace, maintain, and enhance the abilities of a specific tissue or organ by means of living cells. More

Tissue engineering is a field of regenerative medicine that integrates the knowledge of scientists, physicians, and engineers into the construction or reconstruction of human tissue. Practitioners of tissue engineering seek to repair, replace, maintain, and enhance the abilities of a specific tissue or organ by means of living cells. More often than not stem cells are the form of living cells used in this technology. Tissue engineering is one of the disciplines involved in translating knowledge of developmental biology into the clinical setting. One focus that this field has taken is the understanding of tissue and organ development during embryogenesis, as this knowledge will open avenues to new applications of this technology.

Created2010-10-29