This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 17
Filtering by

Clear all filters

173937-Thumbnail Image.png
Description

Leonard Hayflick studied the processes by which cells age during the twentieth and twenty-first centuries in the United States. In 1961 at the Wistar Institute in the US, Hayflick researched a phenomenon later called the Hayflick Limit, or the claim that normal human cells can only divide forty to sixty

Leonard Hayflick studied the processes by which cells age during the twentieth and twenty-first centuries in the United States. In 1961 at the Wistar Institute in the US, Hayflick researched a phenomenon later called the Hayflick Limit, or the claim that normal human cells can only divide forty to sixty times before they cannot divide any further. Researchers later found that the cause of the Hayflick Limit is the shortening of telomeres, or portions of DNA at the ends of chromosomes that slowly degrade as cells replicate. Hayflick used his research on normal embryonic cells to develop a vaccine for polio, and from HayflickÕs published directions, scientists developed vaccines for rubella, rabies, adenovirus, measles, chickenpox and shingles.

Created2014-07-20
Description

James Marion Sims developed a surgical cure for ruptures of the wall separating the bladder from the vagina during labor, ruptures called vesico-vaginal fistulas, and he developed techniques and tools used to improve reproductive examinations and health care for women in the US during the nineteenth century. Sims's lateral examination

James Marion Sims developed a surgical cure for ruptures of the wall separating the bladder from the vagina during labor, ruptures called vesico-vaginal fistulas, and he developed techniques and tools used to improve reproductive examinations and health care for women in the US during the nineteenth century. Sims's lateral examination position allowed doctors to better see the vaginal cavity, and his speculum, a spoon-like object used for increased view into the vagina, helped to make gynecological examinations more thorough. Sims helped ease the physical and social strains of post-birth women who suffered from vesico-vaginal fistulas, and he established the first hospital in New York City, New York, dedicated solely to treating women and improving women's health care.

Created2013-04-08
Description

Johann Gregor Mendel studied plants and their patterns of inheritance in Austria during the nineteenth century. Mendel experimented with the pea plant, Pisum, and his publication, 'Versuche uber Pflanzenhybriden' (“Experiments on Plant Hybridization”), published in 1866, revolutionized theories of trait inheritance. Mendel’s discoveries relating to factors, traits, and how they

Johann Gregor Mendel studied plants and their patterns of inheritance in Austria during the nineteenth century. Mendel experimented with the pea plant, Pisum, and his publication, 'Versuche uber Pflanzenhybriden' (“Experiments on Plant Hybridization”), published in 1866, revolutionized theories of trait inheritance. Mendel’s discoveries relating to factors, traits, and how they pass between generations of organisms enabled scientists in the twentieth century to build theories of genetics.

Created2013-07-27
172800-Thumbnail Image.png
Description

Victor Jollos studied fruit flies and microorganisms in Europe and the US, and he introduced the concept of Dauermodifikationen in the early 1900s. The concept of Dauermodifikationen refers to environmentally-induced traits that are heritable for only a limited number of generations. Some scientists interpreted the results of Jollos's work on

Victor Jollos studied fruit flies and microorganisms in Europe and the US, and he introduced the concept of Dauermodifikationen in the early 1900s. The concept of Dauermodifikationen refers to environmentally-induced traits that are heritable for only a limited number of generations. Some scientists interpreted the results of Jollos's work on Paramecium and Drosophila as
evidence for cytoplasmic inheritance. Jollos was forced to emigrate from Germany to the United States due to anti-semitic government policies in the early 1930s. Nevertheless, his work on Dauermodifikationen remained central to theoretical discourse among German zoologists concerning heredity, development, and evolution.

Created2014-09-16
172827-Thumbnail Image.png
Description

Petr Kropotkin proposed the theory of Pleistocene ice age, alternative theories of evolution based on embryology, and he advocated anarchist and communist social doctrines in Europe during the nineteenth and twentieth centuries. He traveled in eastern Siberia and Manchuria from 1863 until 1867, and his subsequent publications about that area's

Petr Kropotkin proposed the theory of Pleistocene ice age, alternative theories of evolution based on embryology, and he advocated anarchist and communist social doctrines in Europe during the nineteenth and twentieth centuries. He traveled in eastern Siberia and Manchuria from 1863 until 1867, and his subsequent publications about that area's geography became authoritative until the middle of the twentieth century. Kropotkin argued that his geographic and geologic observations in Asia, Finland, Sweden, and Canada, supported the theory of Pleistocene continental glaciation, often called the ice age. He was one of the first to study the ancient geography and climate of the Quaternary period, which spans from 2.5 million years ago until the present. Around the turn of the nineteenth century, Kropotkin offered what he said were complementary amendments to Charles Darwin's 1859 theory of evolution by natural selection. Kropotkin employed a variety of arguments from natural history, embryology, and geography to support his theory of mutual aid, which he argued was a positive mechanistic addition to the theory of evolution.

Created2015-06-01
172861-Thumbnail Image.png
Description

Friedrich Tiedemann studied the anatomy of humans and animals in the nineteenth century in Germany. He published on zoological subjects, on the heart of fish, the anatomy of amphibians and echinoderms, and the lymphatic and respiratory system in birds. In addition to his zoological anatomy, Tiedemann, working with the chemist

Friedrich Tiedemann studied the anatomy of humans and animals in the nineteenth century in Germany. He published on zoological subjects, on the heart of fish, the anatomy of amphibians and echinoderms, and the lymphatic and respiratory system in birds. In addition to his zoological anatomy, Tiedemann, working with the chemist Leopold Gmelin, published about how the digestive system functioned. Towards the end of his career Tiedemann published a comparative anatomy of the brains of white Europeans, black Africans, and Orangutans, in which he argued that there were no appreciable differences between the structure of the brains of blacks, women, and white European men that would suggest they were intellectually different. Tiedemann also researched the embryonic development of the brain and circulatory systems of human fetuses.

Created2015-07-07
172755-Thumbnail Image.png
Description

Francis Harry Compton Crick, who co-discovered the structure of deoxyribonucleic acid (DNA) in 1953 in Cambridge, England, also developed The Central Dogma of Molecular Biology, and further clarified the relationship between nucleotides and protein synthesis. Crick received the Nobel Prize in Physiology or Medicine that he shared with James Watson

Francis Harry Compton Crick, who co-discovered the structure of deoxyribonucleic acid (DNA) in 1953 in Cambridge, England, also developed The Central Dogma of Molecular Biology, and further clarified the relationship between nucleotides and protein synthesis. Crick received the Nobel Prize in Physiology or Medicine that he shared with James Watson and Maurice Wilkins in 1962 for their discovery of the molecular structure of DNA. Crick's results on the genetic material found in all living organisms advanced theories of inheritance and spurred further studies into the field of genetics and embryology.

Created2013-11-01
172692-Thumbnail Image.png
Description

Julius von Sachs helped establish plant physiology through his experiments in latter nineteenth-century Germany. Sachs infused the inchoate discipline of plant physiology with experimental techniques and a mechanistic stance, both of which cemented his place as one of the discipline s founders. Sachs trained a generation of plant physiologists, and

Julius von Sachs helped establish plant physiology through his experiments in latter nineteenth-century Germany. Sachs infused the inchoate discipline of plant physiology with experimental techniques and a mechanistic stance, both of which cemented his place as one of the discipline s founders. Sachs trained a generation of plant physiologists, and his stress on experimentation and mechanism influenced biologists in other disciplines, especially embryologist Jacques Loeb.

Created2010-06-07
172704-Thumbnail Image.png
Description

During the mid-nineteenth century, Johann Gregor Mendel experimented with pea plants to develop a theory of inheritance. In 1843, while a monk in the Augustian St Thomas's Abbey in Brünn, Austria, now Brno, Czech Repubic, Mendel examined the physical appearance of the abbey's pea plants (Pisum sativum) and noted inconsistencies

During the mid-nineteenth century, Johann Gregor Mendel experimented with pea plants to develop a theory of inheritance. In 1843, while a monk in the Augustian St Thomas's Abbey in Brünn, Austria, now Brno, Czech Repubic, Mendel examined the physical appearance of the abbey's pea plants (Pisum sativum) and noted inconsistencies between what he saw and what the blending theory of inheritance, a primary model of inheritance at the time, predicted. With his experiments, which he recored in "Versuche uber Pflanzenhybriden" ("Experiments in Plant Hybridization") in 1865, Mendel discredited the blending theory of inheritance, and from them he proposed laws for inheritance patterns. Despite the fact that Mendel's work did not define all aspects of inheritance, his ideas and laws contributed to later concepts of traits, specifically that offspring inherit traits from their parents via genes, that an offspring has at least two genetic factors for any given qualitative trait, and that the offspring inherits the genetic factors in equal proportion from both parents.

Created2013-09-04
173703-Thumbnail Image.png
Description

Jacques Loeb broadened and corrected his earlier claims concerning artificial parthenogenesis in sea urchins in a series of experiments in 1900. He published these findings, "Further Experiments on Artificial Parthenogenesis and the Nature of The Process of Fertilization," in a 1900 issue of The American Journal of Physiology.

Jacques Loeb broadened and corrected his earlier claims concerning artificial parthenogenesis in sea urchins in a series of experiments in 1900. He published these findings, "Further Experiments on Artificial Parthenogenesis and the Nature of The Process of Fertilization," in a 1900 issue of The American Journal of Physiology. His new results amended those from earlier experiments he summarized in 1899's "On the Nature of the Process of Fertilization and the Artificial Production of Norma Larvae (Plutei) from the Unfertilized Eggs of the Sea Urchin." Loeb's 1899 results were tainted by improperly prepared salts used in his experiments. Loeb's 1900 results corrected those of 1899 and led to more refined study of artificial parthenogenesis, the human-caused development of unfertilized eggs.

Created2009-06-10