This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 21 - 25 of 25
Filtering by

Clear all filters

172680-Thumbnail Image.png
Description

Ectoderm is one of three germ layers--groups of cells that coalesce early during the embryonic life of all animals except maybe sponges, and from which organs and tissues form. As an embryo develops, a single fertilized cell progresses through multiple rounds of cell division. Eventually, the clump of cells goes

Ectoderm is one of three germ layers--groups of cells that coalesce early during the embryonic life of all animals except maybe sponges, and from which organs and tissues form. As an embryo develops, a single fertilized cell progresses through multiple rounds of cell division. Eventually, the clump of cells goes through a stage called gastrulation, during which the embryo reorganizes itself into the three germ layers: endoderm, ectoderm, and mesoderm. After gastrulation, the embryo goes through a process called neurulation, which starts the development of nervous system.

Created2013-12-02
172805-Thumbnail Image.png
Description

The hedgehog signaling pathway is a mechanism that directs the development of embryonic cells in animals, from invertebrates to vertebrates. The hedgehog signaling pathway is a system of genes and gene products, mostly proteins, that convert one kind of signal into another, called transduction. In 1980, Christiane Nusslein-Volhard and Eric

The hedgehog signaling pathway is a mechanism that directs the development of embryonic cells in animals, from invertebrates to vertebrates. The hedgehog signaling pathway is a system of genes and gene products, mostly proteins, that convert one kind of signal into another, called transduction. In 1980, Christiane Nusslein-Volhard and Eric F. Wieschaus, at the European Molecular Biology Laboratory in Heidelberg, Germany, identified several fruit fly (Drosophila melanogaster) genes. They found that when those genes were changed or mutated, the mutated genes disrupted the normal development of fruit fly larvae. The researchers called one of the genes hedgehog (abbreviated hh). Nusslein-Volhard, Wieschaus, and Edward B. Lewis, at the California Institute of Technology in Pasadena, California, shared the 1995 Nobel Prize for Physiology or Medicine for their research on how genes control early embryonic development in fruit flies. The hedgehog signaling pathway is conserved across many animal taxa or phyla, from Drosophila to humans. The hedgehog signaling pathway controls several key components of embryonic development, stem-cell maintenance, and it influences the development of some cancers.

Created2015-07-30
172776-Thumbnail Image.png
Description

Neurocristopathies are a class of pathologies in vertebrates,
including humans, that result from abnormal expression, migration,
differentiation, or death of neural crest cells (NCCs) during embryonic development. NCCs are cells
derived from the embryonic cellular structure called the neural crest.
Abnormal NCCs can cause a neurocristopathy by chemically affecting the

Neurocristopathies are a class of pathologies in vertebrates,
including humans, that result from abnormal expression, migration,
differentiation, or death of neural crest cells (NCCs) during embryonic development. NCCs are cells
derived from the embryonic cellular structure called the neural crest.
Abnormal NCCs can cause a neurocristopathy by chemically affecting the
development of the non-NCC tissues around them. They can also affect the
development of NCC tissues, causing defective migration or
proliferation of the NCCs. There are many neurocristopathies
that affect many different types of systems. Some neurocristopathies
result in albinism (piebaldism) and cleft palate in humans. Various
pigment, skin, thyroid, and hearing disorders, craniofacial and heart
abnormalities, malfunctions of the digestive tract, and tumors can be
classified as neurocristopathies. This classification ties a variety of
disorders to one embryonic origin.

Created2014-09-19
172777-Thumbnail Image.png
Description

Early in the process of development, vertebrate embryos develop a fold on the neural plate where the neural and epidermal ectoderms meet, called the neural crest. The neural crest produces neural crest cells (NCCs), which become multiple different cell types and contribute to tissues and organs as an embryo develops.

Early in the process of development, vertebrate embryos develop a fold on the neural plate where the neural and epidermal ectoderms meet, called the neural crest. The neural crest produces neural crest cells (NCCs), which become multiple different cell types and contribute to tissues and organs as an embryo develops. A few of the organs and tissues include peripheral and enteric (gastrointestinal) neurons and glia, pigment cells, cartilage and bone of the cranium and face, and smooth muscle. The diversity of NCCs that the neural crest produces has led researchers to propose the neural crest as a fourth germ layer, or one of the primary cellular structures in early embryos from which all adult tissues and organs arise. Furthermore, evolutionary biologists study the neural crest because it is a novel shared evolutionary character (synapomorphy) of all vertebrates.

Created2014-09-15
172752-Thumbnail Image.png
Description

Etienne Geoffroy Saint-Hilaire, commonly known as Geoffroy, studied animals, their anatomy and their embryos, and teratogens at the National Museum of Natural History in Paris, France in the eighteenth and nineteenth centuries. Geoffroy also helped develop several specialized fields in the life sciences, including experimental embryology. In his efforts to

Etienne Geoffroy Saint-Hilaire, commonly known as Geoffroy, studied animals, their anatomy and their embryos, and teratogens at the National Museum of Natural History in Paris, France in the eighteenth and nineteenth centuries. Geoffroy also helped develop several specialized fields in the life sciences, including experimental embryology. In his efforts to experimentally demonstrate the theory of recapitulation, Geoffroy developed techniques to intervene in the growth of embryos to see whether they would develop into different kinds of organisms. Moreover, Geoffroy emphasized the concept of l'unite de composition (the unity of plan). Geoffroy disputed in 1830 with Georges Cuvier over whether form or function matters most for the study of anatomy and whether the transformation of organic forms can occur over time. Geoffroy's conceptual contributions, as well as his experimental research, influenced embryological research on animal morphology and teratogens, and later the field of evolutionary paleontology.

Created2013-08-05