This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 66
Filtering by

Clear all filters

172898-Thumbnail Image.png
Description

Telomeres are sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or tangling, which could cause irregularities in normal DNA functions. As cells replicate, telomeres shorten at the end of chromosomes, which correlates to senescence or cellular aging. Integral to this process is

Telomeres are sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or tangling, which could cause irregularities in normal DNA functions. As cells replicate, telomeres shorten at the end of chromosomes, which correlates to senescence or cellular aging. Integral to this process is telomerase, which is an enzyme that repairs telomeres and is present in various cells in the human body, especially during human growth and development. Telomeres and telomerase are required for normal human embryonic development because they protect DNA as it completes multiple rounds of replication.

Created2015-02-11
172902-Thumbnail Image.png
Description

In March 2011 the Organic Seed Growers and Trade Association and around sixty agricultural organizations (OSGATA et al.) filed a suit against Monsanto Company and Monsanto Technology L.L.C., collectively called Monsanto. The hearings for Organic Seed Growers and Trade Association (OSGATA) et al. v. Monsanto (2012) took place at the

In March 2011 the Organic Seed Growers and Trade Association and around sixty agricultural organizations (OSGATA et al.) filed a suit against Monsanto Company and Monsanto Technology L.L.C., collectively called Monsanto. The hearings for Organic Seed Growers and Trade Association (OSGATA) et al. v. Monsanto (2012) took place at the United States District Court for the Southern District of New York in Manhattan, New York. The district court's Judge Naomi Reice Buchwald dismissed OSGATA's suit. A year later, OSGATA appealed to the United States Court of Appeals for the Federal Circuit in Washington, D.C., and the court agreed with the District Court's 2013 decision. OSGATA appealed to the US Supreme Court in late 2013, and the Supreme Court refused to hear the case in 2014. In the OSGATA et al. v. Monsanto case, OSGATA claimed that genetically modified seeds are a threat to both human health and conventional and organic farming. OSGATA petitioned that because of this threat, twenty-three of Monsanto's patents on genetic modification processes and technologies were invalid.

Created2014-12-30
172911-Thumbnail Image.png
Description

Carol Widney Greider studied telomeres and telomerase in the US at the turn of the twenty-first century. She worked primarily at the University of California, Berkeley in Berkeley, California.
She received the Nobel Prize in Physiology or Medicine in 2009, along with Elizabeth Blackburn and Jack Szostak, for their

Carol Widney Greider studied telomeres and telomerase in the US at the turn of the twenty-first century. She worked primarily at the University of California, Berkeley in Berkeley, California.
She received the Nobel Prize in Physiology or Medicine in 2009, along with Elizabeth Blackburn and Jack Szostak, for their research on telomeres and telomerase. Telomeres are repetitive sequences of
DNA at the ends of chromosomes that protect chromosomes from tangling, and they provide some protection from mutations. Greider also studied telomerase, an enzyme that repairs telomeres. Without telomeres, chromosomes are subject to mutations that can lead to
cell death, and without telomerase, cells might not reproduce fast enough during embryonic development. Greider's research on telomeres helped scientists explain how chromosomes function within cells.

ContributorsBartlett, Zane (Author) / Wagoner, Nevada (Editor)
Created2015-01-26
172927-Thumbnail Image.png
Description

The Y-chromosome is one of a pair of chromosomes that determine the genetic sex of individuals in mammals, some insects, and some plants. In the nineteenth and twentieth centuries, the development of new microscopic and molecular techniques, including DNA sequencing, enabled scientists to confirm the hypothesis that chromosomes determine the

The Y-chromosome is one of a pair of chromosomes that determine the genetic sex of individuals in mammals, some insects, and some plants. In the nineteenth and twentieth centuries, the development of new microscopic and molecular techniques, including DNA sequencing, enabled scientists to confirm the hypothesis that chromosomes determine the sex of developing organisms. In an adult organism, the genes on the Y-chromosome help produce the male gamete, the sperm cell. Beginning in the 1980s, many studies of human populations used the Y-chromosome gene sequences to trace paternal lineages. In mammals, the Y-chromosomes contain the master-switch gene for sex determination, called the sex-determining region Y, or the SRY gene in humans. In most normal cases, if a fertilized egg cell, called a zygote, has the SRY gene, the zygote develops into an embryos that has male sex traits. If the zygote lacks the SRY gene or if the SRY gene is defective, the zygote develops into an embryo that has female sex traits.

Created2015-05-28
173209-Thumbnail Image.png
Description

Barbara McClintock conducted experiments on corn (Zea mays) in the United States in the mid-twentieth century to study the structure and function of the chromosomes in the cells. McClintock researched how genes combined in corn and proposed mechanisms for how those interactions are regulated. McClintock received the Nobel Prize in

Barbara McClintock conducted experiments on corn (Zea mays) in the United States in the mid-twentieth century to study the structure and function of the chromosomes in the cells. McClintock researched how genes combined in corn and proposed mechanisms for how those interactions are regulated. McClintock received the Nobel Prize in Physiology or Medicine in 1983, the first woman to win the prize without sharing it. McClintock won the award for her introduction of the concept of transposons, also called jumping genes. McClintock conceptualized some genetic material as not static in structure and order, but as subject to re-arrangement and may be altered during development.

Created2017-02-09
Description

Thalidomide is a sedative drug introduced to European markets on 1 October 1957 after extensive testing on rodent embryos to ensure its safety. Early laboratory tests in rodent populations showed that pregnant rodents could safely use it, so doctors prescribed Thalidomide to treat morning sickness in pregnant women. However, in

Thalidomide is a sedative drug introduced to European markets on 1 October 1957 after extensive testing on rodent embryos to ensure its safety. Early laboratory tests in rodent populations showed that pregnant rodents could safely use it, so doctors prescribed Thalidomide to treat morning sickness in pregnant women. However, in humans Thalidomide interfered with embryonic and fetal development in ways not observed in rodent tests. Pregnant women who take Thalidomide are at grater than normal risk for spontaneous abortion and for giving birth to children with developmental anomalies such as shortened, absent, or extra limbs, as well as a variety of heart, ear, and internal organ defects. The failure of rodent models to inform scientists of Thalidomide's teratogenicity in humans ignited debate about the proper use of cross-species testing during drug development.

Created2014-03-07
173179-Thumbnail Image.png
Description

Curt Jacob Stern studied radiation and chromosomes in humans and fruit flies in the United States during the twentieth century. He researched the mechanisms of inheritance and of mitosis, or the process in which the chromosomes in the nucleus of a single cell, called the parent cell, split into identical

Curt Jacob Stern studied radiation and chromosomes in humans and fruit flies in the United States during the twentieth century. He researched the mechanisms of inheritance and of mitosis, or the process in which the chromosomes in the nucleus of a single cell, called the parent cell, split into identical sets and yield two cells, called daughter cells. Stern worked on the Drosophila melanogaster fruit fly, and he provided early evidence that chromosomes exchange genetic material during cellular reproduction. During World War II, he provided evidence for the harmful effects of radiation on developing organisms. That research showed that mutations can cause problems in developing fetuses and can lead to cancer. He helped explain how genetic material transmits from parent to progeny, and how it functions in developing organisms.

Created2017-06-23
173204-Thumbnail Image.png
Description

Kurt Benirschke studied cells, placentas, and endangered species in Germany and the US during the twentieth century. Benirschke was professor at the University of California in San Diego, California, and a director of the research department at the San Diego Zoo in San Diego, California. He also helped form the

Kurt Benirschke studied cells, placentas, and endangered species in Germany and the US during the twentieth century. Benirschke was professor at the University of California in San Diego, California, and a director of the research department at the San Diego Zoo in San Diego, California. He also helped form the research department of the San Diego Zoo and its sister organization, the Center for Reproduction of Endangered Species. Benirschke contributed to the field of embryology through his work on human and animal reproduction, including work on human placentas and birth defects, through work on the structure of chromosomes, and through work on the reproduction and conservation of endangered species.

Created2016-04-26
172855-Thumbnail Image.png
Description

By 2011, researchers in the US had established that non-invasive blood tests can accurately determine the gender of a human fetus as early as seven weeks after fertilization. Experts predicted that this ability may encourage the use of prenatal sex screening tests by women interested to know the gender of

By 2011, researchers in the US had established that non-invasive blood tests can accurately determine the gender of a human fetus as early as seven weeks after fertilization. Experts predicted that this ability may encourage the use of prenatal sex screening tests by women interested to know the gender of their fetuses. As more people begin to use non-invasive blood tests that accurately determine the sex of the fetus at 7 weeks, many ethical questions pertaining to regulation, the consequences of gender-imbalanced societies, and altered meanings of the parent-child relationship.

Created2014-03-23
172863-Thumbnail Image.png
Description

Lysogenic bacteria, or virus-infected bacteria, were the primary experimental models used by scientists working in the laboratories of the Pasteur Institute in Paris, France, during the 1950s and 1960s. Historians of science have noted that the use of lysogenic bacteria as a model in microbiological research influenced the scientific achievements

Lysogenic bacteria, or virus-infected bacteria, were the primary experimental models used by scientists working in the laboratories of the Pasteur Institute in Paris, France, during the 1950s and 1960s. Historians of science have noted that the use of lysogenic bacteria as a model in microbiological research influenced the scientific achievements of the Pasteur Institute's scientists. Francois Jacob and Jacques Monod used lysogenic bacteria to develop their operon model of gene regulation, to investigate the cellular regulatory mechanisms of the lysogenic life cycle, and to infer the process of cellular differentiation in the development of more complex eukaryotes.

Created2014-10-10