This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 75
Filtering by

Clear all filters

173015-Thumbnail Image.png
Description

Henry Herbert Goddard was a psychologist who conducted research on intelligence and mental deficiency at the Vineland Training School for Feeble-Minded Boys and Girls in Vineland, New Jersey during the early twentieth century. In 1908, Goddard brought French psychologist Alfred Binet and physician Theodore Simon’s intelligence test to the US

Henry Herbert Goddard was a psychologist who conducted research on intelligence and mental deficiency at the Vineland Training School for Feeble-Minded Boys and Girls in Vineland, New Jersey during the early twentieth century. In 1908, Goddard brought French psychologist Alfred Binet and physician Theodore Simon’s intelligence test to the US and used it to investigate intellectual disability in children at the Vineland Training School for Feeble-Minded Boys and Girls. Goddard also wrote a book in 1912 called The Kallikaks: A Study in the Heredity of Feeble-Mindedness, claiming that traits like mental deficiency were heritable traits. His observations and research led Goddard to advocate for sterilization and segregation of the intellectually disabled, which were ideas that reflected the emerging eugenics movement in the US, during the early nineteenth century. Although by the end of his life, psychologists largely dismissed Goddard’s work, schools and the US military used Goddard’s version of Binet and Simon’s intelligence test to identify mental deficiency.

Created2021-05-06
172979-Thumbnail Image.png
Description

Charles Benedict Davenport, Madison Grant, and Henry Fairfield Osborn founded the Galton Society for the Study of the Origin and Evolution of Man, or the Galton Society, in New York City, New York, in 1918. The Galton Society was a scientific society that promoted the study of humans in terms

Charles Benedict Davenport, Madison Grant, and Henry Fairfield Osborn founded the Galton Society for the Study of the Origin and Evolution of Man, or the Galton Society, in New York City, New York, in 1918. The Galton Society was a scientific society that promoted the study of humans in terms of race in service to the US eugenics movement. The Galton Society was named in honor of Francis Galton who first coined the term eugenics in 1883. Galton and other eugenics proponents claimed that the human species could improve through selective breeding that restricted who could have children. Some of the society members were scientists from a wide range of disciplines who supported the now disproven notion that fundamental biological differences exist between races that may justify the control of human reproduction. The Galton Society drew on the scientific credibility and influence of its members to advocate for eugenics programs, such as immigration restriction laws, in the US.

Created2021-06-03
172898-Thumbnail Image.png
Description

Telomeres are sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or tangling, which could cause irregularities in normal DNA functions. As cells replicate, telomeres shorten at the end of chromosomes, which correlates to senescence or cellular aging. Integral to this process is

Telomeres are sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or tangling, which could cause irregularities in normal DNA functions. As cells replicate, telomeres shorten at the end of chromosomes, which correlates to senescence or cellular aging. Integral to this process is telomerase, which is an enzyme that repairs telomeres and is present in various cells in the human body, especially during human growth and development. Telomeres and telomerase are required for normal human embryonic development because they protect DNA as it completes multiple rounds of replication.

Created2015-02-11
172909-Thumbnail Image.png
Description

In the early 2000s, Manjong Han, Xiaodang Yang, Jennifer Farrington, and Ken Muneoka investigated how genes and proteins in fetal mice (Mus musculus) influenced those fetal mice to regenerate severed toes at Tulane University in New Orleans, Louisiana. The group used hind limbs from mice to show how the gene

In the early 2000s, Manjong Han, Xiaodang Yang, Jennifer Farrington, and Ken Muneoka investigated how genes and proteins in fetal mice (Mus musculus) influenced those fetal mice to regenerate severed toes at Tulane University in New Orleans, Louisiana. The group used hind limbs from mice to show how the gene Msx1 (Homeobox 7) functions in regenerating amputated digits. The researchers showed that in the process of regenerating digit tips, Msx1 genes make products that regulate or influence other genes, such as the Bone Morphogenetic Protein 4 gene (BMP4 gene), to produce proteins, such as the BMP4 proteins. The researchers also showed that BMP4 proteins, which are produced from the BMP4 gene, function in tissues during the process of limb development. Furthermore, while Msx1 genes regulate other genes during the process of regeneration, they don't produce proteins otherwise needed to organize cells in the regeneration of digit tissues. The group published their results in 2003 as Digit Regeneration Is Regulated by Msx1 and BMP4 in Fetal Mice.

Created2015-04-13
172911-Thumbnail Image.png
Description

Carol Widney Greider studied telomeres and telomerase in the US at the turn of the twenty-first century. She worked primarily at the University of California, Berkeley in Berkeley, California.
She received the Nobel Prize in Physiology or Medicine in 2009, along with Elizabeth Blackburn and Jack Szostak, for their

Carol Widney Greider studied telomeres and telomerase in the US at the turn of the twenty-first century. She worked primarily at the University of California, Berkeley in Berkeley, California.
She received the Nobel Prize in Physiology or Medicine in 2009, along with Elizabeth Blackburn and Jack Szostak, for their research on telomeres and telomerase. Telomeres are repetitive sequences of
DNA at the ends of chromosomes that protect chromosomes from tangling, and they provide some protection from mutations. Greider also studied telomerase, an enzyme that repairs telomeres. Without telomeres, chromosomes are subject to mutations that can lead to
cell death, and without telomerase, cells might not reproduce fast enough during embryonic development. Greider's research on telomeres helped scientists explain how chromosomes function within cells.

ContributorsBartlett, Zane (Author) / Wagoner, Nevada (Editor)
Created2015-01-26
172927-Thumbnail Image.png
Description

The Y-chromosome is one of a pair of chromosomes that determine the genetic sex of individuals in mammals, some insects, and some plants. In the nineteenth and twentieth centuries, the development of new microscopic and molecular techniques, including DNA sequencing, enabled scientists to confirm the hypothesis that chromosomes determine the

The Y-chromosome is one of a pair of chromosomes that determine the genetic sex of individuals in mammals, some insects, and some plants. In the nineteenth and twentieth centuries, the development of new microscopic and molecular techniques, including DNA sequencing, enabled scientists to confirm the hypothesis that chromosomes determine the sex of developing organisms. In an adult organism, the genes on the Y-chromosome help produce the male gamete, the sperm cell. Beginning in the 1980s, many studies of human populations used the Y-chromosome gene sequences to trace paternal lineages. In mammals, the Y-chromosomes contain the master-switch gene for sex determination, called the sex-determining region Y, or the SRY gene in humans. In most normal cases, if a fertilized egg cell, called a zygote, has the SRY gene, the zygote develops into an embryos that has male sex traits. If the zygote lacks the SRY gene or if the SRY gene is defective, the zygote develops into an embryo that has female sex traits.

Created2015-05-28
173209-Thumbnail Image.png
Description

Barbara McClintock conducted experiments on corn (Zea mays) in the United States in the mid-twentieth century to study the structure and function of the chromosomes in the cells. McClintock researched how genes combined in corn and proposed mechanisms for how those interactions are regulated. McClintock received the Nobel Prize in

Barbara McClintock conducted experiments on corn (Zea mays) in the United States in the mid-twentieth century to study the structure and function of the chromosomes in the cells. McClintock researched how genes combined in corn and proposed mechanisms for how those interactions are regulated. McClintock received the Nobel Prize in Physiology or Medicine in 1983, the first woman to win the prize without sharing it. McClintock won the award for her introduction of the concept of transposons, also called jumping genes. McClintock conceptualized some genetic material as not static in structure and order, but as subject to re-arrangement and may be altered during development.

Created2017-02-09
173233-Thumbnail Image.png
Description

Karl Oskar Illmensee studied the cloning and reproduction of fruit flies, mice, and humans in the US and Europe during the twentieth and twenty-first centuries. Illmensee used nuclear transfer techniques (cloning) to create early mouse embryos from adult mouse cells, a technique biologists used in later decades to help explain

Karl Oskar Illmensee studied the cloning and reproduction of fruit flies, mice, and humans in the US and Europe during the twentieth and twenty-first centuries. Illmensee used nuclear transfer techniques (cloning) to create early mouse embryos from adult mouse cells, a technique biologists used in later decades to help explain how embryonic cells function during development. In the early 1980s, Illmensee faced accusations of fraud when others were unable to replicate the results of his experiments with cloned mouse embryos. Illmensee also worked with human embryos, investigating how embryos split to form identical twins.

Created2017-02-26
Description

The Malthusian League, founded in London, England, in 1877 promoted the use of contraception to limit family size. Activists Charles Bradlaugh and Annie Besant established the Malthusian League after they were arrested and exonerated for publishing a pamphlet describing techniques to prevent pregnancy. Founders based the league on the principles

The Malthusian League, founded in London, England, in 1877 promoted the use of contraception to limit family size. Activists Charles Bradlaugh and Annie Besant established the Malthusian League after they were arrested and exonerated for publishing a pamphlet describing techniques to prevent pregnancy. Founders based the league on the principles of Thomas Malthus, a British nineteenth century economist, who wrote on the perils of a population growing beyond the resources available to support it. The Malthusian League advocated for limiting family size voluntarily through contraception to avoid the overpopulation and poverty cautioned in Malthus’ work. After fifty years, the Malthusian League closed due to the increasing disapproval for Malthus’s economic theories of population and poverty. However, the Malthusian League’s activism during the late nineteenth and early twentieth centuries led to more tolerant views of contraception and family planning in Great Britain in the twentieth century.

Created2017-04-27
173179-Thumbnail Image.png
Description

Curt Jacob Stern studied radiation and chromosomes in humans and fruit flies in the United States during the twentieth century. He researched the mechanisms of inheritance and of mitosis, or the process in which the chromosomes in the nucleus of a single cell, called the parent cell, split into identical

Curt Jacob Stern studied radiation and chromosomes in humans and fruit flies in the United States during the twentieth century. He researched the mechanisms of inheritance and of mitosis, or the process in which the chromosomes in the nucleus of a single cell, called the parent cell, split into identical sets and yield two cells, called daughter cells. Stern worked on the Drosophila melanogaster fruit fly, and he provided early evidence that chromosomes exchange genetic material during cellular reproduction. During World War II, he provided evidence for the harmful effects of radiation on developing organisms. That research showed that mutations can cause problems in developing fetuses and can lead to cancer. He helped explain how genetic material transmits from parent to progeny, and how it functions in developing organisms.

Created2017-06-23