This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 33
Filtering by

Clear all filters

173931-Thumbnail Image.png
Description

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of cells transforms into a two-layered embryo made of an inner layer of endoderm and an outer layer of ectoderm. In more complex organisms, like vertebrates, these two primary germ layers interact to give rise to a third germ layer, called mesoderm. Regardless of the presence of two or three layers, endoderm is always the inner-most layer. Endoderm forms the epithelium-- a type of tissue in which the cells are tightly linked together to form sheets-- that lines the primitive gut. From this epithelial lining of the primitive gut, organs like the digestive tract, liver, pancreas, and lungs develop.

Created2013-11-17
173431-Thumbnail Image.png
Description

Boris Ephrussi and George Wells Beadle developed a transplantation technique on flies, Drosophila melanogaster, which they described in their 1936 article A Technique of Transplantation for Drosophila. The technique of injecting a tissue from one fly larva into another fly larva, using a micropipette, to grow that tissue in the

Boris Ephrussi and George Wells Beadle developed a transplantation technique on flies, Drosophila melanogaster, which they described in their 1936 article A Technique of Transplantation for Drosophila. The technique of injecting a tissue from one fly larva into another fly larva, using a micropipette, to grow that tissue in the second larvae, was a means for investigating development of Drosophila. Through this technique, Beadle and Ephrussi studied the role of genes in embryological processes. Beadle and Ephrussi were the first to apply the transplantation method, which had previously been used in the study of larger insects, to the smaller sized Drosophila. Beadle and Ephrussi used this method of transplantation to determine if parts of the optic disc, the section of a larvae that later become the eye buds in the adult, could be extracted from one larva and transplanted into another. They later built upon this research to relate the production of molecules in cells to gene function.

Created2014-06-29
Description

In April 1953, James Watson and Francis Crick published “Molecular Structure of Nucleic Acids: A Structure of Deoxyribose Nucleic Acid” or “A Structure for Deoxyribose Nucleic Acid,” in the journal Nature. In the article, Watson and Crick propose a novel structure for deoxyribonucleic acid or DNA. In 1944, Oswald T.

In April 1953, James Watson and Francis Crick published “Molecular Structure of Nucleic Acids: A Structure of Deoxyribose Nucleic Acid” or “A Structure for Deoxyribose Nucleic Acid,” in the journal Nature. In the article, Watson and Crick propose a novel structure for deoxyribonucleic acid or DNA. In 1944, Oswald T. Avery and his group at Rockefeller University in New York City, New York published experimental evidence that DNA contained genes, the biological factors called genes that dictate how organisms grow and develop. Scientists did not know how DNA’s function led to the passage of genetic information from cell to cell, or organism to organism. The model that Watson and Crick presented connected the concept of genes to heredity, growth, and development. As of 2018, most scientists accept Watson and Crick’s model of DNA presented in the article. For their work on DNA, Watson and Crick shared the 1962 Nobel Prize in Physiology or Medicine with Maurice Wilkins.

Created2019-10-31
173251-Thumbnail Image.png
Description

In 2012, a team of scientists across the US conducted an experiment to find the mechanism that allowed a group of flatworms, planarians, to regenerate any body part. The group included Danielle Wenemoser, Sylvain Lapan, Alex Wilkinson, George Bell, and Peter Reddien. They aimed to identify genes that are expressed

In 2012, a team of scientists across the US conducted an experiment to find the mechanism that allowed a group of flatworms, planarians, to regenerate any body part. The group included Danielle Wenemoser, Sylvain Lapan, Alex Wilkinson, George Bell, and Peter Reddien. They aimed to identify genes that are expressed by planarians in response to wounds that initiated a regenerative mechanism. The researchers determined several genes as important for tissue regeneration. The investigation helped scientists explain how regeneration is initiated and describe the overall regenerative mechanism of whole organisms.

Created2017-05-09
173342-Thumbnail Image.png
Description

In 1956, Gunther Stent, a scientist at the University of California Berkeley in Berkeley, California, coined the terms conservative, semi-conservative, and dispersive to categorize the prevailing theories about how DNA replicated. Stent presented a paper with Max Delbrück titled “On the Mechanism of DNA Replication” at the McCollum-Pratt Symposium at

In 1956, Gunther Stent, a scientist at the University of California Berkeley in Berkeley, California, coined the terms conservative, semi-conservative, and dispersive to categorize the prevailing theories about how DNA replicated. Stent presented a paper with Max Delbrück titled “On the Mechanism of DNA Replication” at the McCollum-Pratt Symposium at Johns Hopkins University in Baltimore, Maryland. In response to James Watson and Francis Crick’s proposed structure of DNA in 1953, scientists debated how DNA replicated. Throughout the debate, scientists hypothesized different theories about how DNA replicated, but none of the theories had sound experimental data. Stent introduced DNA replication classes that, if present in DNA, would yield distinct experimental results. Conservative, semi-conservative, and dispersive DNA replication categories shaped scientists' research into how DNA replicated, which led to the conclusion that DNA replicated semi-conservatively.

Created2019-10-31
Description

Felix Anton Dohrn is best remembered as the founder of the Stazione Zoologica di Napoli, the world' s first permanent laboratory devoted to the study of marine organisms. Dohrn was born on 29 December 1840 in Stettin, Pomerania (now Poland), to a wealthy merchant family. Dohrn's paternal grandfather, Heinrich, trained

Felix Anton Dohrn is best remembered as the founder of the Stazione Zoologica di Napoli, the world' s first permanent laboratory devoted to the study of marine organisms. Dohrn was born on 29 December 1840 in Stettin, Pomerania (now Poland), to a wealthy merchant family. Dohrn's paternal grandfather, Heinrich, trained as a surgeon and then established a sugar refinery, while Dohrn's father, Carl August Dohrn, who inherited the family business, became interested in natural history through Alexander von Humboldt, a family friend. Once settled in his career, Anton Dohrn's own research never strayed far from the origin of vertebrates. He promoted the theory that vertebrates closely resemble and are derived from annelid-like ancestors and he spent years studying the early embryogenesis of lower vertebrates in attempts to prove this.

Created2011-02-22
173088-Thumbnail Image.png
Description

A germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues. All animals, except perhaps sponges, form two or three germ layers. The germ layers develop early in embryonic life, through

A germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues. All animals, except perhaps sponges, form two or three germ layers. The germ layers develop early in embryonic life, through the process of gastrulation. During gastrulation, a hollow cluster of cells called a blastula reorganizes into two primary germ layers: an inner layer, called endoderm, and an outer layer, called ectoderm. Diploblastic organisms have only the two primary germ layers; these organisms characteristically have multiple symmetrical body axes (radial symmetry), as is true of jellyfish, sea anemones, and the rest of the phylum Cnidaria. All other animals are triploblastic, as endoderm and ectoderm interact to produce a third germ layer, called mesoderm. Together, the three germ layers will give rise to every organ in the body, from skin and hair to the digestive tract.

Created2013-09-17
172716-Thumbnail Image.png
Description

Golden Rice was engineered from normal rice by Ingo Potrykus and Peter Beyer in the 1990s to help improve human health. Golden Rice has an engineered multi-gene biochemical pathway in its genome. This pathway produces beta-carotene, a molecule that becomes vitamin A when metabolized by humans. Ingo Potrykus worked at

Golden Rice was engineered from normal rice by Ingo Potrykus and Peter Beyer in the 1990s to help improve human health. Golden Rice has an engineered multi-gene biochemical pathway in its genome. This pathway produces beta-carotene, a molecule that becomes vitamin A when metabolized by humans. Ingo Potrykus worked at the Swiss Federal Institute of Technology in Zurich, Switzerland, and Peter Beyer worked at University of Freiburg, in Freiburg, Germany. The US Rockefeller Foundation supported their collaboration. The scientists and their collaborators first succeeded in expressing beta-carotene in rice in 1999, and they published the results in 2000. Since then, scientists have improved Golden Rice through laboratory and field trials, but as of 2013 no countries have grown it commercially. Golden Rice is a technology that intersects scientific and ethical debates that extend beyond a grain of rice.

Created2013-09-17
172752-Thumbnail Image.png
Description

Etienne Geoffroy Saint-Hilaire, commonly known as Geoffroy, studied animals, their anatomy and their embryos, and teratogens at the National Museum of Natural History in Paris, France in the eighteenth and nineteenth centuries. Geoffroy also helped develop several specialized fields in the life sciences, including experimental embryology. In his efforts to

Etienne Geoffroy Saint-Hilaire, commonly known as Geoffroy, studied animals, their anatomy and their embryos, and teratogens at the National Museum of Natural History in Paris, France in the eighteenth and nineteenth centuries. Geoffroy also helped develop several specialized fields in the life sciences, including experimental embryology. In his efforts to experimentally demonstrate the theory of recapitulation, Geoffroy developed techniques to intervene in the growth of embryos to see whether they would develop into different kinds of organisms. Moreover, Geoffroy emphasized the concept of l'unite de composition (the unity of plan). Geoffroy disputed in 1830 with Georges Cuvier over whether form or function matters most for the study of anatomy and whether the transformation of organic forms can occur over time. Geoffroy's conceptual contributions, as well as his experimental research, influenced embryological research on animal morphology and teratogens, and later the field of evolutionary paleontology.

Created2013-08-05
173202-Thumbnail Image.png
Description

The hedgehog signaling pathway is a mechanism that regulates cell growth and differentiation during embryonic development, called embryogenesis, in animals. The hedgehog signaling pathway works both between cells and within individual cells.

Created2016-06-27