This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 407
Filtering by

Clear all filters

173925-Thumbnail Image.png
Description

Wilhelm Roux was a nineteenth-century experimental embryologist who was best known for pioneering Entwicklungsmechanik, or developmental mechanics. Roux was born in Jena, Germany, on 9 June 1850, the only son of Clotilde Baumbach and a university fencing master, F. A. Wilhelm Ludwig Roux. Roux described himself as an aloof child,

Wilhelm Roux was a nineteenth-century experimental embryologist who was best known for pioneering Entwicklungsmechanik, or developmental mechanics. Roux was born in Jena, Germany, on 9 June 1850, the only son of Clotilde Baumbach and a university fencing master, F. A. Wilhelm Ludwig Roux. Roux described himself as an aloof child, but when he was fourteen he cultivated a passion for science that was encouraged by the director at Oberrealschule in Meiningen. Roux attended the University of Jena in 1869, but his education was halted after the first year because of his service in the military during the Franco-Prussian War. When he returned from the war, he continued to take classes and was admitted into the University of Jena medical faculty. He passed his medical examination in 1877 and became a licensed doctor.

Created2009-07-22
173926-Thumbnail Image.png
Description

Carl Gottfried Hartman researched the reproductive physiology of opossums and rhesus monkeys. He was the first to extensively study the embryology and physiology of reproduction in opossums when little was known about this mammal. Hartman worked in Texas where opossums, the only marsupial that lives in North America, were abundant.

Carl Gottfried Hartman researched the reproductive physiology of opossums and rhesus monkeys. He was the first to extensively study the embryology and physiology of reproduction in opossums when little was known about this mammal. Hartman worked in Texas where opossums, the only marsupial that lives in North America, were abundant. The female opossum delivers her fetal opossums in her pouch, where one can easily observe their development. After studying opossums for thirteen years, Hartman investigated the reproductive physiology of rhesus monkeys, also known as macaques. This research led to the discovery of when ovulation occurs, as well as its relation to the human menstrual cycle. Later research on scientific methods of birth control relied heavily on Hartman 's discoveries about primate and human reproduction.

Created2011-11-01
173930-Thumbnail Image.png
Description

Fetal programming, or prenatal programming, is a concept that suggests certain events occurring during critical points of pregnancy may cause permanent effects on the fetus and the infant long after birth. The concept of fetal programming stemmed from the fetal origins hypothesis, also known as Barker’s hypothesis, that David Barker

Fetal programming, or prenatal programming, is a concept that suggests certain events occurring during critical points of pregnancy may cause permanent effects on the fetus and the infant long after birth. The concept of fetal programming stemmed from the fetal origins hypothesis, also known as Barker’s hypothesis, that David Barker proposed in 1995 at the University of Southampton in Southampton, England. The fetal origins hypothesis states that undernutrition in the womb during middle to late pregnancy causes improper fetal growth, which in turn, causes a predisposition to certain diseases in adulthood. In addition to nutritional impacts, researchers have studied the fetal programming effects of many factors, such as maternal anxiety or violence during pregnancy. Researchers proposing the concept of fetal programming established a new area of research into the developmental causes of disease, pointing towards the in utero environment and its critical role in healthy human development.

Created2020-11-03
173932-Thumbnail Image.png
Description

The sex of a reptile embryo partly results from the production of sex hormones during development, and one process to produce those hormones depends on the temperature of the embryo's environment. The production of sex hormones can result solely from genetics or from genetics in combination with the influence of

The sex of a reptile embryo partly results from the production of sex hormones during development, and one process to produce those hormones depends on the temperature of the embryo's environment. The production of sex hormones can result solely from genetics or from genetics in combination with the influence of environmental factors. In genotypic sex determination, also called genetic or chromosomal sex determination, an organism's genes determine which hormones are produced. Non-genetic sex determination occurs when the sex of an organism can be altered during a sensitive period of development due to external factors such as temperature, humidity, or social interactions. Temperature-dependent sex determination (TSD), where the temperature of the embryo's environment influences its sex development, is a widespread non-genetic process of sex determination among vertebrates, including reptiles. All crocodilians, most turtles, many fish, and some lizards exhibit TSD.

Created2013-02-01
173936-Thumbnail Image.png
Description

In 1868 in England, Charles Darwin proposed his pangenesis theory to describe the units of inheritance between parents and offspring and the processes by which those units control development in offspring. Darwin coined the concept of gemmules, which he said referred to hypothesized minute particles of inheritance thrown off by

In 1868 in England, Charles Darwin proposed his pangenesis theory to describe the units of inheritance between parents and offspring and the processes by which those units control development in offspring. Darwin coined the concept of gemmules, which he said referred to hypothesized minute particles of inheritance thrown off by all cells of the body. The theory suggested that an organism's environment could modify the gemmules in any parts of the body, and that these modified gemmules would congregate in the reproductive organs of parents to be passed on to their offspring. Darwin's theory of pangenesis gradually lost popularity in the 1890s when biologists increasingly abandoned the theory of inheritance of acquired characteristics (IAC), on which the pangenesis theory partially relied. Around the turn of the twentieth century, biologists replaced the theory of pangenesis with germ plasm theory and then with chromosomal theories of inheritance, and they replaced the concept of gemmules with that of genes.

Created2014-07-20
173938-Thumbnail Image.png
Description

Isotretinoin is a molecule and a byproduct (metabolite) of vitamin A, and in greater than normal amounts in pregnant women, it can cause fetal abnormalities including cleft lips, ear and eye defects, and mental retardation. Isotretinoin is commonly called by its trade name Accutane, and it's a chemical compound derived

Isotretinoin is a molecule and a byproduct (metabolite) of vitamin A, and in greater than normal amounts in pregnant women, it can cause fetal abnormalities including cleft lips, ear and eye defects, and mental retardation. Isotretinoin is commonly called by its trade name Accutane, and it's a chemical compound derived from vitamin A, or retinoic acid. Doctors prescribe isotretinoin to treat severe acne. For pregnant women, too much vitamin A or isotretinoin can also cause greater than normal rates of stillbirths and fetal disintegrations after the ninth week of gestation. Women who use isotretinoin during the first trimester of their pregnancies, even in small amounts, risk defects to their fetuses such as external ear malformations, cleft palates, undersized jaws (micrognathia), a variety of heart defects, buildups of fluids inside the skulls that leads to brain swelling (hydrocephalus), small heads and brains (microcephaly), and mental retardation.

Created2014-07-20
173939-Thumbnail Image.png
Description

Although best known for his work with the fruit fly, for which he earned a Nobel Prize and the title "The Father of Genetics," Thomas Hunt Morgan's contributions to biology reach far beyond genetics. His research explored questions in embryology, regeneration, evolution, and heredity, using a variety of approaches.

Created2007-09-25
173882-Thumbnail Image.png
Description

The "Humanae Vitae," meaning "Of Human Life" and subtitled "On the Regulation of Birth," was an encyclical promulgated in Rome, Italy, on 25 July 1968 by Pope Paul VI. This encyclical defended and reiterated the Roman Catholic Church's stance on family planning and reproductive issues such as abortion, sterilization,

The "Humanae Vitae," meaning "Of Human Life" and subtitled "On the Regulation of Birth," was an encyclical promulgated in Rome, Italy, on 25 July 1968 by Pope Paul VI. This encyclical defended and reiterated the Roman Catholic Church's stance on family planning and reproductive issues such as abortion, sterilization, and contraception. The document continues to have a controversial reputation today, as its statements regarding birth control strike many Catholics as unreasonable.

Created2007-11-13
173886-Thumbnail Image.png
Description

Orchiopexy, also known as orchidopexy, is a surgical technique that can correct cryptorchidism and was successfully performed for one of the first times in 1877 in Scotland. Cryptorchidism, a condition where one or both of the testicles fail to descend before birth, is one of the most common male genital

Orchiopexy, also known as orchidopexy, is a surgical technique that can correct cryptorchidism and was successfully performed for one of the first times in 1877 in Scotland. Cryptorchidism, a condition where one or both of the testicles fail to descend before birth, is one of the most common male genital birth defects, affecting approximately 2 to 8 percent of full-term male infants, and around 33 percent of premature infants. Typically in the womb, male testes form within the abdomen, then descend into the scrotal area between twenty-five to thirty-five weeks’ gestation. If one or both testicles fail to descend before birth, physicians use orchiopexy to surgically relocate the undescended testes to their normal position in the scrotum. According to many researchers, most cases of cryptorchidism do not resolve on their own, and therefore, orchiopexy surgery is often necessary. Orchiopexy, when performed before puberty, can decrease the risk of testicular cancer and infertility associated with cryptorchidism.

Created2020-10-15
173887-Thumbnail Image.png
Description

Frank R. Lillie was born in Toronto, Canada, on 27 June 1870. His mother was Emily Ann Rattray and his father was George Waddell Little, an accountant and co-owner of a wholesale drug company. While in high school Lillie took up interests in entomology and paleontology but went

Frank R. Lillie was born in Toronto, Canada, on 27 June 1870. His mother was Emily Ann Rattray and his father was George Waddell Little, an accountant and co-owner of a wholesale drug company. While in high school Lillie took up interests in entomology and paleontology but went to the University of Toronto with the aim of studying ministry. He slowly became disillusioned with this career choice and decided to major in the natural sciences. It was during his senior year that he developed his lifelong interest in embryology. Graduating with a BA in 1891 Lillie then moved to the Marine Biological Laboratory (MBL) at Woods Hole, Massachusetts, to work and study with Charles Otis Whitman, the founding director of the MBL. Lillie collected and studied cell lineage side-by-side with some of the most prominent embryologists of the time: Edmund B. Wilson, Edwin G. Conklin, and Aaron L. Treadwell. Along with his cell lineage studies, Whitman guided Lillie to work on the question of how blastomeres contributed to the formation of organs in fresh water clams.

Created2009-07-22