This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 49
Filtering by

Clear all filters

173928-Thumbnail Image.png
Description

Rosalind Elsie Franklin worked with X-ray crystallography at King's College London, UK, and she helped determine the helical structure of DNA in the early 1950s. Franklin's research helped establish molecular genetics, a field that investigates how heredity works on the molecular level. The discovery of the structure of DNA also

Rosalind Elsie Franklin worked with X-ray crystallography at King's College London, UK, and she helped determine the helical structure of DNA in the early 1950s. Franklin's research helped establish molecular genetics, a field that investigates how heredity works on the molecular level. The discovery of the structure of DNA also made future research possible into the molecular basis of embryonic development, genetic disorders, and gene manipulation.

Created2013-11-17
173931-Thumbnail Image.png
Description

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of cells transforms into a two-layered embryo made of an inner layer of endoderm and an outer layer of ectoderm. In more complex organisms, like vertebrates, these two primary germ layers interact to give rise to a third germ layer, called mesoderm. Regardless of the presence of two or three layers, endoderm is always the inner-most layer. Endoderm forms the epithelium-- a type of tissue in which the cells are tightly linked together to form sheets-- that lines the primitive gut. From this epithelial lining of the primitive gut, organs like the digestive tract, liver, pancreas, and lungs develop.

Created2013-11-17
173937-Thumbnail Image.png
Description

Leonard Hayflick studied the processes by which cells age during the twentieth and twenty-first centuries in the United States. In 1961 at the Wistar Institute in the US, Hayflick researched a phenomenon later called the Hayflick Limit, or the claim that normal human cells can only divide forty to sixty

Leonard Hayflick studied the processes by which cells age during the twentieth and twenty-first centuries in the United States. In 1961 at the Wistar Institute in the US, Hayflick researched a phenomenon later called the Hayflick Limit, or the claim that normal human cells can only divide forty to sixty times before they cannot divide any further. Researchers later found that the cause of the Hayflick Limit is the shortening of telomeres, or portions of DNA at the ends of chromosomes that slowly degrade as cells replicate. Hayflick used his research on normal embryonic cells to develop a vaccine for polio, and from HayflickÕs published directions, scientists developed vaccines for rubella, rabies, adenovirus, measles, chickenpox and shingles.

Created2014-07-20
173940-Thumbnail Image.png
Description

The Cell-Theory was written by Thomas Henry Huxley in Britain and published in 1853 by The British and Foreign Medico-Chirurgical Review. The twenty-two page article reviews twelve works on cell theory, including those in Germany by Caspar Friedrich Wolff in the eighteenth century and by Karl Ernst von Baer in

The Cell-Theory was written by Thomas Henry Huxley in Britain and published in 1853 by The British and Foreign Medico-Chirurgical Review. The twenty-two page article reviews twelve works on cell theory, including those in Germany by Caspar Friedrich Wolff in the eighteenth century and by Karl Ernst von Baer in the nineteenth century. Huxley spends much of The Cell-Theory on a cell theory proposed in the late 1830s by Matthias Schleiden and Theodor Schwann in Germany. Schleiden and Schwann maintained that the cell was the most fundamental unit of life and that the nucleus was the most significant cellular component. Huxley, instead, promoted an epigenetic theory of the cell, for which properties of life emerge from the outer cytoplasm, cell membrane, and wall (the periplast), as opposed to the inner contents of the cell, including the nucleus (the endoplast). Huxley's arguments in The Cell-Theory influenced future scientists about the role of epigenetic processes in embryology and development.

Created2013-12-12
173907-Thumbnail Image.png
Description

Rudolf Carl Virchow lived in nineteenth century Prussia, now Germany, and proposed that omnis cellula e cellula, which translates to each cell comes from another cell, and which became and fundamental concept for cell theory. He helped found two fields, cellular pathology and comparative pathology, and he contributed to many

Rudolf Carl Virchow lived in nineteenth century Prussia, now Germany, and proposed that omnis cellula e cellula, which translates to each cell comes from another cell, and which became and fundamental concept for cell theory. He helped found two fields, cellular pathology and comparative pathology, and he contributed to many others. Ultimately Virchow argued that disease is caused by changes in normal cells, also known as cellular pathology.

Created2012-03-17
173385-Thumbnail Image.png
Description

Calvin Blackman Bridges studied chromosomes and heredity in the US throughout the early twentieth century. Bridges performed research with Thomas Hunt Morgan at Columbia University in New York City, New York, and at the California Institute of Technology in Pasadena, California. Bridges and Morgan studied heredity in Drosophila, the common

Calvin Blackman Bridges studied chromosomes and heredity in the US throughout the early twentieth century. Bridges performed research with Thomas Hunt Morgan at Columbia University in New York City, New York, and at the California Institute of Technology in Pasadena, California. Bridges and Morgan studied heredity in Drosophila, the common fruit fly. Throughout the early twentieth century, researchers were gathering evidence that genes, or what Gregor Mendel had called the factors that control heredity, are located on chromosomes. At Columbia, Morgan disputed the theory, but in 1916, Calvin Bridges published evidence that, according to Morgan, did much to convince skeptics of that theory. Bridges also established that specific chromosomes function in determining sex in Drosophila.

Created2017-05-19
173388-Thumbnail Image.png
Description

Alfred Henry Sturtevant studied heredity in fruit flies in the US throughout the twentieth century. From 1910 to 1928, Sturtevant worked in Thomas Hunt Morgan’s research lab in New York City, New York. Sturtevant, Morgan, and other researchers established that chromosomes play a role in the inheritance of traits. In

Alfred Henry Sturtevant studied heredity in fruit flies in the US throughout the twentieth century. From 1910 to 1928, Sturtevant worked in Thomas Hunt Morgan’s research lab in New York City, New York. Sturtevant, Morgan, and other researchers established that chromosomes play a role in the inheritance of traits. In 1913, as an undergraduate, Sturtevant created one of the earliest genetic maps of a fruit fly chromosome, which showed the relative positions of genes along the chromosome. At the California Institute of Technology in Pasadena, California, he later created one of the first fate maps, which tracks embryonic cells throughout their development into an adult organism. Sturtevant’s contributions helped scientists explain genetic and cellular processes that affect early organismal development.

Created2017-05-20
173395-Thumbnail Image.png
Description

Matthias Jacob Schleiden helped develop the cell theory in Germany during the nineteenth century. Schleiden studied cells as the common element among all plants and animals. Schleiden contributed to the field of embryology through his introduction of the Zeiss microscope lens and via his work with cells and cell theory

Matthias Jacob Schleiden helped develop the cell theory in Germany during the nineteenth century. Schleiden studied cells as the common element among all plants and animals. Schleiden contributed to the field of embryology through his introduction of the Zeiss microscope lens and via his work with cells and cell theory as an organizing principle of biology.

Created2017-05-29
173396-Thumbnail Image.png
Description

From 1913 to 1916, Calvin Bridges performed experiments that indicated genes are found on chromosomes. His experiments were a part of his doctoral thesis advised by Thomas Hunt Morgan in New York, New York. In his experiments, Bridges studied Drosophila, the common fruit fly, and by doing so showed that

From 1913 to 1916, Calvin Bridges performed experiments that indicated genes are found on chromosomes. His experiments were a part of his doctoral thesis advised by Thomas Hunt Morgan in New York, New York. In his experiments, Bridges studied Drosophila, the common fruit fly, and by doing so showed that a process called nondisjunction caused chromosomes, under some circumstances, to fail to separate when forming sperm and egg cells. Nondisjunction, as described by Bridges, caused sperm or egg cells to contain abnormal amounts of chromosomes. In some cases, that caused the offspring produced by the sperm or eggs to display traits that they would typically not have. His research on nondisjunction provided evidence that chromosomes carry genetic traits, including those that determine the sex of an organism.

Created2017-05-18
173399-Thumbnail Image.png
Description

In 1910, Thomas Hunt Morgan performed an experiment at Columbia University, in New York City, New York, that helped identify the role chromosomes play in heredity. That year, Morgan was breeding Drosophila, or fruit flies. After observing thousands of fruit fly offspring with red eyes, he obtained one that had

In 1910, Thomas Hunt Morgan performed an experiment at Columbia University, in New York City, New York, that helped identify the role chromosomes play in heredity. That year, Morgan was breeding Drosophila, or fruit flies. After observing thousands of fruit fly offspring with red eyes, he obtained one that had white eyes. Morgan began breeding the white-eyed mutant fly and found that in one generation of flies, the trait was only present in males. Through more breeding analysis, Morgan found that the genetic factor controlling eye color in the flies was on the same chromosome that determined sex. That result indicated that eye color and sex were both tied to chromosomes and helped Morgan and colleagues establish that chromosomes carry the genes that allow offspring to inherit traits from their parents.

Created2017-05-22