This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 57
Filtering by

Clear all filters

173931-Thumbnail Image.png
Description

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of cells transforms into a two-layered embryo made of an inner layer of endoderm and an outer layer of ectoderm. In more complex organisms, like vertebrates, these two primary germ layers interact to give rise to a third germ layer, called mesoderm. Regardless of the presence of two or three layers, endoderm is always the inner-most layer. Endoderm forms the epithelium-- a type of tissue in which the cells are tightly linked together to form sheets-- that lines the primitive gut. From this epithelial lining of the primitive gut, organs like the digestive tract, liver, pancreas, and lungs develop.

Created2013-11-17
173935-Thumbnail Image.png
Description

Tooth enamel contains relics of its formation process, in the form of microstructures, which indicate the incremental way in which it forms. These microstructures, called cross-striations and striae of Retzius, develop as enamel-forming cells called ameloblasts, whcih cyclically deposit enamel on developing teeth in accordance with two different biological clocks.

Tooth enamel contains relics of its formation process, in the form of microstructures, which indicate the incremental way in which it forms. These microstructures, called cross-striations and striae of Retzius, develop as enamel-forming cells called ameloblasts, whcih cyclically deposit enamel on developing teeth in accordance with two different biological clocks. Cross-striations result from a twenty-four hour cycle, called a Circadian rhythm, in the enamel deposition process, while striae of Retzius have a longer periodicity. Unlike other tissues, enamel does not remodel after it forms, leaving those microstructures intact after deposition. Cross-striations and striae of Retzius thus provide evidence of the timing and processes of tooth development, and they indicate how organisms in a lineage differently grow and develop across generations. Researchers have examined those microstructures to investigate human evolution.

Created2013-01-31
173880-Thumbnail Image.png
Description

Frederik Ruysch, working in the Netherlands, introduced the term epithelia in the third volume of his Thesaurus Anatomicus in 1703. Ruysch created the term from the Greek epi, which means on top of, and thele, which means nipple, to describe the type of tissue he found when dissecting the li

Frederik Ruysch, working in the Netherlands, introduced the term epithelia in the third volume of his Thesaurus Anatomicus in 1703. Ruysch created the term from the Greek epi, which means on top of, and thele, which means nipple, to describe the type of tissue he found when dissecting the lip of a cadaver. In the mid nineteenth century, anatomist Albrecht von Haller adopted the word epithelium, designating Ruysch's original terminology as the plural version. In modern science, epithelium is a type of animal tissue in which cells are packed into neatly arranged sheets. The epithelial cells lie proximate to each other and attach to a thin, fibrous sheet called a basement membrane. Epithelia line the surfaces of cavities and structures throughout the body, and also form glands. Although they lack blood vessels, epithelia contain nerves and can function to receive sensation, absorb, protect, and secrete, depending on which part of the body the epithelia line. During development, epithelia act in conjunction with another tissue type, mesenchyme, to form nearly every organ in the body, from hair and teeth to the digestive tract. Epithelia are an essential part of embryonic development and the maintenance and function of the body throughout life.

Created2012-10-17
173909-Thumbnail Image.png
Description

Hilde Proscholdt Mangold was a doctoral student at the Zoological Institute at the University of Freiburg in Freiburg, Germany, from 1920-1923. Mangold conducted research for her dissertation 'On the Induction of Embryonic Primordia by Implantation of Organizers from Different Species' ('Ueber Induktion von Embryonanlagen durch Implantation artfremder Organisatoren'), under the

Hilde Proscholdt Mangold was a doctoral student at the Zoological Institute at the University of Freiburg in Freiburg, Germany, from 1920-1923. Mangold conducted research for her dissertation 'On the Induction of Embryonic Primordia by Implantation of Organizers from Different Species' ('Ueber Induktion von Embryonanlagen durch Implantation artfremder Organisatoren'), under the guidance of Hans Spemann, a professor of zoology at the University of Freiburg. The dissertation was the culmination of five experiments on three species of newt embryos, of the genus Triton (presently, Triturus), performed during the summers of 1921 and 1922, which resulted in a confirmation of Spemann's organizer concept. Spemann and Mangold published the dissertation in a 1924 edition of Roux's Archives for Microscopic Anatomy and Developmental Mechanics (Roux's Archiv fur Mikroskopische Anatomie und Entwicklungsmechanik)."

Created2012-12-19
173386-Thumbnail Image.png
Description

Matthew Kaufman was a professor of anatomy at the University of Edinburgh, in Edinburgh, UK, who specialized in mouse anatomy, development, and embryology during the late twentieth century. According to the The Herald, he was the first, alongside his colleague Martin Evans, to isolate and culture embryonic stem cells. Researchers

Matthew Kaufman was a professor of anatomy at the University of Edinburgh, in Edinburgh, UK, who specialized in mouse anatomy, development, and embryology during the late twentieth century. According to the The Herald, he was the first, alongside his colleague Martin Evans, to isolate and culture embryonic stem cells. Researchers initially called those cells Evans-Kaufman cells. In 1992, Kaufman published The Atlas of Mouse Development, a book that included photographs of mice development and mice organs over time. Kaufman also wrote books about UK medical history, phrenology, or the study of craniums as an indicator of character or mental ability, and medical teaching in the eighteenth and nineteenth centuries. Kaufman’s anatomical records and experiments in mouse development contributed to genetic engineering, embryology, and anatomy.

Created2018-08-31
173412-Thumbnail Image.png
Description

Henry Morgentaler was a physician who performed abortions, acted as a reproductive rights activist, and advocated for legal access to abortions in Canada during the twentieth century. In 1969, he opened his first abortion clinic in Canada and participated in the legal/court case of R v. Morgentaler (1988), which led

Henry Morgentaler was a physician who performed abortions, acted as a reproductive rights activist, and advocated for legal access to abortions in Canada during the twentieth century. In 1969, he opened his first abortion clinic in Canada and participated in the legal/court case of R v. Morgentaler (1988), which led Canada to decriminalize abortion. Morgentaler helped establish legal access to abortions for women in Canada and advocated for the protection of women's reproductive choices under the law.

Created2017-06-09
173428-Thumbnail Image.png
Description

Where Are My Children? is an anti-abortion silent film released in the United States on 16 April 1916. The film was directed by Lois Weber and Phillips Smalley and produced by Universal Film Manufacturing Company/Lois Weber Productions in Universal City, California. In the film, Weber tells a story of an

Where Are My Children? is an anti-abortion silent film released in the United States on 16 April 1916. The film was directed by Lois Weber and Phillips Smalley and produced by Universal Film Manufacturing Company/Lois Weber Productions in Universal City, California. In the film, Weber tells a story of an attorney who wants to have children and raise a family, but his wife chooses to abort her pregnancies, fearing that having children will ruin her social activities. In the early 1900s, information about contraception was not freely available or legal to obtain. Physicians were allowed to distribute contraceptives only if the woman would be put in a life-threatening circumstance were she to get pregnant. In the film, Weber encourages contraceptives as a means of family planning, but advocates against abortions. Where Are My Children? is one of the first films to discuss birth control and family planning, and it is among the first to push against motion picture censorship of contraception and family planning in cinema.

Created2017-05-26
173207-Thumbnail Image.png
Description

Margaret Higgins Sanger advocated for birth control in the United States and Europe during the late nineteenth and early twentieth centuries. Although people used contraceptives prior to the twentieth century, in the US the 1873 Comstock Act made the distribution of information relating to the use of contraceptives illegal, and

Margaret Higgins Sanger advocated for birth control in the United States and Europe during the late nineteenth and early twentieth centuries. Although people used contraceptives prior to the twentieth century, in the US the 1873 Comstock Act made the distribution of information relating to the use of contraceptives illegal, and similar state-level Comstock laws also classified discussion and dissemination of contraceptives as illegal. Sanger helped to repeal the Comstock Act and similar laws so that women could legally use contraceptives to control their fertility and the sizes of their families. In 1916, Sanger opened the first birth control clinic in the US in New York City, New York. Later in life, Sanger formed several advocacy organizations that promoted access to contraception, including the Planned Parenthood Federation of America. Sanger's advocacy increased women's access to contraception and helped change the United States' social and legal perceptions of birth control.

Created2016-10-13
173215-Thumbnail Image.png
Description

Margaret Goldwater advocated for birth control and reproductive rights in the United States during the twentieth century. Goldwater was a socialite and philanthropist and was married to Barry Goldwater, US Senator from Arizona. She spent much of her life working to further the women's reproductive rights movement, which sought to

Margaret Goldwater advocated for birth control and reproductive rights in the United States during the twentieth century. Goldwater was a socialite and philanthropist and was married to Barry Goldwater, US Senator from Arizona. She spent much of her life working to further the women's reproductive rights movement, which sought to expand women's legal, social, and physical access to reproductive healthcare, including contraception and abortions. Goldwater, with guidance from birth control activist Margaret Sanger, helped establish the second birth control clinic in Arizona, the Mother's Health Clinic in Phoenix, Arizona. She conducted large fundraising events and authored articles in local newspapers on the need for contraceptives and family planning. Goldwater's advocacy helped launch and sustain The Mother's Health Clinic, which became the largest provider of women's reproductive healthcare in Arizona, and it later became Planned Parenthood of Central and Northern Arizona.

Created2016-10-13
173241-Thumbnail Image.png
Description

John Hunter studied human reproductive anatomy, and in eighteenth century England, performed one of the earliest described cases of artificial insemination. Hunter dissected thousands of animals and human cadavers to study the structures and functions of organ systems. Much of his anatomical studies focused on the circulatory, digestive, and reproductive

John Hunter studied human reproductive anatomy, and in eighteenth century England, performed one of the earliest described cases of artificial insemination. Hunter dissected thousands of animals and human cadavers to study the structures and functions of organ systems. Much of his anatomical studies focused on the circulatory, digestive, and reproductive systems. He helped to describe the exchange of blood between pregnant women and their fetuses. Hunter also housed various natural collections, as well as thousands of preserved specimens from greater than thirty years of anatomy work. Hunter's work developed practices in reproductive and reparative surgery and furthered the study of human anatomy and physiology.

Created2017-02-17