This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 80
Filtering by

Clear all filters

173004-Thumbnail Image.png
Description

In 1861, William John Little published, “On The Influence of Abnormal Parturition, Difficult Labors, Premature Birth, and Asphyxia Neonatorum, on the Mental and Physical Condition of the Child, Especially in Relation to Deformities,” hereafter “Abnormal Parturition,” in the Transactions of the Obstetrical Society of London. In the article, Little discussed

In 1861, William John Little published, “On The Influence of Abnormal Parturition, Difficult Labors, Premature Birth, and Asphyxia Neonatorum, on the Mental and Physical Condition of the Child, Especially in Relation to Deformities,” hereafter “Abnormal Parturition,” in the Transactions of the Obstetrical Society of London. In the article, Little discussed the causes and types of what he refers to as abnormal births, and theorized how those births affect an infant’s likelihood of exhibiting a deformity. Little defined abnormal births as those involving an atypical maternal or fetal presentation, such as a slow birthing process or a fetus exiting the birth canal feet first rather than head first. In his article, Little published one of the first definitional frameworks to describe a condition causing rigidity and stiffness in the limbs that is often associated with birth-related trauma, which was then called Little’s disease, but is modernly known as spastic Cerebral Palsy.

Created2021-05-02
173007-Thumbnail Image.png
Description

The March of Dimes Foundation, or the March of Dimes, is a non-profit organization headquartered in Arlington, Virginia, focused on the health of pregnant women and infants in the US. Former United States president Franklin Delano Roosevelt founded the March of Dimes, then called the National Foundation for Infantile Paralysis,

The March of Dimes Foundation, or the March of Dimes, is a non-profit organization headquartered in Arlington, Virginia, focused on the health of pregnant women and infants in the US. Former United States president Franklin Delano Roosevelt founded the March of Dimes, then called the National Foundation for Infantile Paralysis, in 1938 to address polio. Polio is a viral illness that infects the spinal cord and may lead to paralysis. Roosevelt contracted polio in 1921, which left him permanently paralyzed from the waist down. During the 1960s, after scientists introduced polio vaccines, March of Dimes shifted its focus to prevent preterm birth and birth defects. As a non-profit organization, March of Dimes provides community service, funds for research, and efforts to educate the public about preterm birth and birth defects. While March of Dimes’ original goal was to help reduce the spread of polio in the US, it was also one of the first organizations to lead a campaign to prevent birth defects and infant mortality.

Created2021-05-17
173009-Thumbnail Image.png
Description

William John Little was one of the first orthopedic surgeons to research congenital malformations and their causes in the nineteenth century and presented preliminary research on a condition modernly known as cerebral palsy, a condition of varying severity that affects a person’s ability to move. Little worked throughout the United

William John Little was one of the first orthopedic surgeons to research congenital malformations and their causes in the nineteenth century and presented preliminary research on a condition modernly known as cerebral palsy, a condition of varying severity that affects a person’s ability to move. Little worked throughout the United Kingdom for the majority of the time he practiced medicine, and eventually founded one of the first orthopedic infirmaries, the Royal Orthopedic Hospital in London, England. Throughout his career, Little studied congenital malformations, which are medical conditions inherited before birth, as well as how certain medical circumstances during delivery affect the neonate. In 1861, he described a condition with motor, behavioral, and cognitive irregularities in neonates, linked with oxygen deprivation during birth. Little’s research on that condition, originally called Little’s disease, and modernly, spastic cerebral palsy, was one of the first accounts of cerebral palsy in infants.

Created2021-05-03
172973-Thumbnail Image.png
Description

In 1616 in Padua, Italy, Fortunio Liceti, a professor of natural philosophy and medicine, wrote and published the first edition of De Monstruorum Causis, Natura et Differentiis (On the Reasons, Nature, and Differences of Monsters), hereafter De monstruorum. In De monstruorum, Liceti chronologically documented cases of human and animal monsters

In 1616 in Padua, Italy, Fortunio Liceti, a professor of natural philosophy and medicine, wrote and published the first edition of De Monstruorum Causis, Natura et Differentiis (On the Reasons, Nature, and Differences of Monsters), hereafter De monstruorum. In De monstruorum, Liceti chronologically documented cases of human and animal monsters from antiquity to the seventeenth century. During the seventeenth century, many people considered such monsters as frightening signs of evil cursed by spiritual or supernatural entities. Liceti categorized monsters based on their potential causes, several of which he claimed were unrelated to the supernatural. Historians later noted that some documented monsters were infants with birth defects. In De monstruorum, Liceti elevated the status of monsters to potential subjects of scientific inquiry and provided an early model for the study of birth defects, a field later called teratology.

Created2018-11-29
172898-Thumbnail Image.png
Description

Telomeres are sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or tangling, which could cause irregularities in normal DNA functions. As cells replicate, telomeres shorten at the end of chromosomes, which correlates to senescence or cellular aging. Integral to this process is

Telomeres are sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or tangling, which could cause irregularities in normal DNA functions. As cells replicate, telomeres shorten at the end of chromosomes, which correlates to senescence or cellular aging. Integral to this process is telomerase, which is an enzyme that repairs telomeres and is present in various cells in the human body, especially during human growth and development. Telomeres and telomerase are required for normal human embryonic development because they protect DNA as it completes multiple rounds of replication.

Created2015-02-11
172906-Thumbnail Image.png
Description

Mesoderm is one of the three germ layers, groups of cells that interact early during the embryonic life of animals and from which organs and tissues form. As organs form, a process called organogenesis, mesoderm interacts with endoderm and ectoderm to give rise to the digestive tract, the heart and

Mesoderm is one of the three germ layers, groups of cells that interact early during the embryonic life of animals and from which organs and tissues form. As organs form, a process called organogenesis, mesoderm interacts with endoderm and ectoderm to give rise to the digestive tract, the heart and skeletal muscles, red blood cells, and the tubules of the kidneys, as well as a type of connective tissue called mesenchyme. All animals that have only one plane of symmetry through the body, called bilateral symmetry, form three germ layers. Animals that have only two germ layers develop open digestive cavities. In contrast, the evolutionary development of the mesoderm allowed in animals the formation of internal organs such as stomachs and intestines (viscera).

Created2013-11-26
172911-Thumbnail Image.png
Description

Carol Widney Greider studied telomeres and telomerase in the US at the turn of the twenty-first century. She worked primarily at the University of California, Berkeley in Berkeley, California.
She received the Nobel Prize in Physiology or Medicine in 2009, along with Elizabeth Blackburn and Jack Szostak, for their

Carol Widney Greider studied telomeres and telomerase in the US at the turn of the twenty-first century. She worked primarily at the University of California, Berkeley in Berkeley, California.
She received the Nobel Prize in Physiology or Medicine in 2009, along with Elizabeth Blackburn and Jack Szostak, for their research on telomeres and telomerase. Telomeres are repetitive sequences of
DNA at the ends of chromosomes that protect chromosomes from tangling, and they provide some protection from mutations. Greider also studied telomerase, an enzyme that repairs telomeres. Without telomeres, chromosomes are subject to mutations that can lead to
cell death, and without telomerase, cells might not reproduce fast enough during embryonic development. Greider's research on telomeres helped scientists explain how chromosomes function within cells.

ContributorsBartlett, Zane (Author) / Wagoner, Nevada (Editor)
Created2015-01-26
172927-Thumbnail Image.png
Description

The Y-chromosome is one of a pair of chromosomes that determine the genetic sex of individuals in mammals, some insects, and some plants. In the nineteenth and twentieth centuries, the development of new microscopic and molecular techniques, including DNA sequencing, enabled scientists to confirm the hypothesis that chromosomes determine the

The Y-chromosome is one of a pair of chromosomes that determine the genetic sex of individuals in mammals, some insects, and some plants. In the nineteenth and twentieth centuries, the development of new microscopic and molecular techniques, including DNA sequencing, enabled scientists to confirm the hypothesis that chromosomes determine the sex of developing organisms. In an adult organism, the genes on the Y-chromosome help produce the male gamete, the sperm cell. Beginning in the 1980s, many studies of human populations used the Y-chromosome gene sequences to trace paternal lineages. In mammals, the Y-chromosomes contain the master-switch gene for sex determination, called the sex-determining region Y, or the SRY gene in humans. In most normal cases, if a fertilized egg cell, called a zygote, has the SRY gene, the zygote develops into an embryos that has male sex traits. If the zygote lacks the SRY gene or if the SRY gene is defective, the zygote develops into an embryo that has female sex traits.

Created2015-05-28
173209-Thumbnail Image.png
Description

Barbara McClintock conducted experiments on corn (Zea mays) in the United States in the mid-twentieth century to study the structure and function of the chromosomes in the cells. McClintock researched how genes combined in corn and proposed mechanisms for how those interactions are regulated. McClintock received the Nobel Prize in

Barbara McClintock conducted experiments on corn (Zea mays) in the United States in the mid-twentieth century to study the structure and function of the chromosomes in the cells. McClintock researched how genes combined in corn and proposed mechanisms for how those interactions are regulated. McClintock received the Nobel Prize in Physiology or Medicine in 1983, the first woman to win the prize without sharing it. McClintock won the award for her introduction of the concept of transposons, also called jumping genes. McClintock conceptualized some genetic material as not static in structure and order, but as subject to re-arrangement and may be altered during development.

Created2017-02-09
173241-Thumbnail Image.png
Description

John Hunter studied human reproductive anatomy, and in eighteenth century England, performed one of the earliest described cases of artificial insemination. Hunter dissected thousands of animals and human cadavers to study the structures and functions of organ systems. Much of his anatomical studies focused on the circulatory, digestive, and reproductive

John Hunter studied human reproductive anatomy, and in eighteenth century England, performed one of the earliest described cases of artificial insemination. Hunter dissected thousands of animals and human cadavers to study the structures and functions of organ systems. Much of his anatomical studies focused on the circulatory, digestive, and reproductive systems. He helped to describe the exchange of blood between pregnant women and their fetuses. Hunter also housed various natural collections, as well as thousands of preserved specimens from greater than thirty years of anatomy work. Hunter's work developed practices in reproductive and reparative surgery and furthered the study of human anatomy and physiology.

Created2017-02-17