This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 68
Filtering by

Clear all filters

172896-Thumbnail Image.png
Description

The Silent Scream is an anti-abortion film released in 1984 by American Portrait Films, then based in Brunswick, Ohio. The film was created and narrated by Bernard Nathanson, an obstetrician and gynecologist from New York, and it was produced by Crusade for Life, an evangelical anti-abortion organization. In the

The Silent Scream is an anti-abortion film released in 1984 by American Portrait Films, then based in Brunswick, Ohio. The film was created and narrated by Bernard Nathanson, an obstetrician and gynecologist from New York, and it was produced by Crusade for Life, an evangelical anti-abortion organization. In the video, Nathanson narrates ultrasound footage of an abortion of a twelve-week-old fetus, claiming that the fetus opened its mouth in what Nathanson calls a silent scream during the procedure. As a result of Nathanson's anti-abortion stance in the film, The Silent Scream contributed to the abortion debate in the 1980s.

Created2013-05-02
172906-Thumbnail Image.png
Description

Mesoderm is one of the three germ layers, groups of cells that interact early during the embryonic life of animals and from which organs and tissues form. As organs form, a process called organogenesis, mesoderm interacts with endoderm and ectoderm to give rise to the digestive tract, the heart and

Mesoderm is one of the three germ layers, groups of cells that interact early during the embryonic life of animals and from which organs and tissues form. As organs form, a process called organogenesis, mesoderm interacts with endoderm and ectoderm to give rise to the digestive tract, the heart and skeletal muscles, red blood cells, and the tubules of the kidneys, as well as a type of connective tissue called mesenchyme. All animals that have only one plane of symmetry through the body, called bilateral symmetry, form three germ layers. Animals that have only two germ layers develop open digestive cavities. In contrast, the evolutionary development of the mesoderm allowed in animals the formation of internal organs such as stomachs and intestines (viscera).

Created2013-11-26
172927-Thumbnail Image.png
Description

The Y-chromosome is one of a pair of chromosomes that determine the genetic sex of individuals in mammals, some insects, and some plants. In the nineteenth and twentieth centuries, the development of new microscopic and molecular techniques, including DNA sequencing, enabled scientists to confirm the hypothesis that chromosomes determine the

The Y-chromosome is one of a pair of chromosomes that determine the genetic sex of individuals in mammals, some insects, and some plants. In the nineteenth and twentieth centuries, the development of new microscopic and molecular techniques, including DNA sequencing, enabled scientists to confirm the hypothesis that chromosomes determine the sex of developing organisms. In an adult organism, the genes on the Y-chromosome help produce the male gamete, the sperm cell. Beginning in the 1980s, many studies of human populations used the Y-chromosome gene sequences to trace paternal lineages. In mammals, the Y-chromosomes contain the master-switch gene for sex determination, called the sex-determining region Y, or the SRY gene in humans. In most normal cases, if a fertilized egg cell, called a zygote, has the SRY gene, the zygote develops into an embryos that has male sex traits. If the zygote lacks the SRY gene or if the SRY gene is defective, the zygote develops into an embryo that has female sex traits.

Created2015-05-28
173209-Thumbnail Image.png
Description

Barbara McClintock conducted experiments on corn (Zea mays) in the United States in the mid-twentieth century to study the structure and function of the chromosomes in the cells. McClintock researched how genes combined in corn and proposed mechanisms for how those interactions are regulated. McClintock received the Nobel Prize in

Barbara McClintock conducted experiments on corn (Zea mays) in the United States in the mid-twentieth century to study the structure and function of the chromosomes in the cells. McClintock researched how genes combined in corn and proposed mechanisms for how those interactions are regulated. McClintock received the Nobel Prize in Physiology or Medicine in 1983, the first woman to win the prize without sharing it. McClintock won the award for her introduction of the concept of transposons, also called jumping genes. McClintock conceptualized some genetic material as not static in structure and order, but as subject to re-arrangement and may be altered during development.

Created2017-02-09
173241-Thumbnail Image.png
Description

John Hunter studied human reproductive anatomy, and in eighteenth century England, performed one of the earliest described cases of artificial insemination. Hunter dissected thousands of animals and human cadavers to study the structures and functions of organ systems. Much of his anatomical studies focused on the circulatory, digestive, and reproductive

John Hunter studied human reproductive anatomy, and in eighteenth century England, performed one of the earliest described cases of artificial insemination. Hunter dissected thousands of animals and human cadavers to study the structures and functions of organ systems. Much of his anatomical studies focused on the circulatory, digestive, and reproductive systems. He helped to describe the exchange of blood between pregnant women and their fetuses. Hunter also housed various natural collections, as well as thousands of preserved specimens from greater than thirty years of anatomy work. Hunter's work developed practices in reproductive and reparative surgery and furthered the study of human anatomy and physiology.

Created2017-02-17
173179-Thumbnail Image.png
Description

Curt Jacob Stern studied radiation and chromosomes in humans and fruit flies in the United States during the twentieth century. He researched the mechanisms of inheritance and of mitosis, or the process in which the chromosomes in the nucleus of a single cell, called the parent cell, split into identical

Curt Jacob Stern studied radiation and chromosomes in humans and fruit flies in the United States during the twentieth century. He researched the mechanisms of inheritance and of mitosis, or the process in which the chromosomes in the nucleus of a single cell, called the parent cell, split into identical sets and yield two cells, called daughter cells. Stern worked on the Drosophila melanogaster fruit fly, and he provided early evidence that chromosomes exchange genetic material during cellular reproduction. During World War II, he provided evidence for the harmful effects of radiation on developing organisms. That research showed that mutations can cause problems in developing fetuses and can lead to cancer. He helped explain how genetic material transmits from parent to progeny, and how it functions in developing organisms.

Created2017-06-23
173039-Thumbnail Image.png
Description

Fetus in fetu is a rare variety of parasitic twins , where the developmentally abnormal parasitic twin is completely encapsulated within the torso of the otherwise normally developed host twin. In the late eighteenth century, German anatomist Johann Friedrich Meckel was the first to described fetus in fetu, which

Fetus in fetu is a rare variety of parasitic twins , where the developmentally abnormal parasitic twin is completely encapsulated within the torso of the otherwise normally developed host twin. In the late eighteenth century, German anatomist Johann Friedrich Meckel was the first to described fetus in fetu, which translates to “fetus within fetus.” Fetus in fetu is thought to result from the unequal division of the totipotent inner cell mass , the mass of cells that is the ancestral precursor to all cells in the body. The unequal division is thought to occur during the formation of the blastocyst, which can also result in parasitic and conjoined twins . Fetus in fetu represents a developmental anomaly that has prompted developmental biologists to further examine the mechanisms for how twins arise.

Created2012-05-30
173049-Thumbnail Image.png
Description

Michael R. Harrison worked as a pediatric surgeon in the US throughout the late-twentieth century and performed many fetal surgeries, including one of the first successful surgeries on a fetus in utero, or while it is still in its gestational carrier’s body, also called open fetal surgery. A fetus is

Michael R. Harrison worked as a pediatric surgeon in the US throughout the late-twentieth century and performed many fetal surgeries, including one of the first successful surgeries on a fetus in utero, or while it is still in its gestational carrier’s body, also called open fetal surgery. A fetus is an organism developing inside of the uterus that is anywhere from eight weeks old to birth. Harrison hypothesized that open fetal surgery could correct developmental defects that may become fatal to the fetus at birth. After years of research, Harrison and his colleagues at the University of California, San Francisco, in San Francisco, California, performed surgery on the fetus of a woman in her seventh month of pregnancy to correct the fetus’s developmental defects. The surgery was successful, as the fetus developed into a healthy child. Harrison’s work led to advancements in fetal treatment techniques, such as a method to conduct open fetal surgery that will not harm the fetus or pregnant woman, as well as the establishment of one of the first fetal treatment centers in the US.

Created2021-08-04
173052-Thumbnail Image.png
Description

In 1996, Michael R. Harrison published “Fetal Surgery” in the American Journal of Obstetrics and Gynecology. In the article, Harrison describes the importance of fetal surgery and the techniques used to correct defects in fetuses. As a fetus develops in the uterus, it can develop abnormalities that may become debilitating

In 1996, Michael R. Harrison published “Fetal Surgery” in the American Journal of Obstetrics and Gynecology. In the article, Harrison describes the importance of fetal surgery and the techniques used to correct defects in fetuses. As a fetus develops in the uterus, it can develop abnormalities that may become debilitating or fatal. Harrison discusses cases that show how physicians can use fetal surgery to repair such abnormalities, including obstructions in the heart or urinary tract, or organs or muscles whose malformations impair function. Harrison states where knowledge is lacking within the field or where surgery would be inappropriate, such as in the modification of a cleft lip, which can be fixed after birth and as such does not merit the risks of surgery. In the article, Harrison provides a summary of what information existed about fetal surgeries in 1996, which helped physicians explore fetal surgery and make further advancements.

Created2021-07-28
173088-Thumbnail Image.png
Description

A germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues. All animals, except perhaps sponges, form two or three germ layers. The germ layers develop early in embryonic life, through

A germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues. All animals, except perhaps sponges, form two or three germ layers. The germ layers develop early in embryonic life, through the process of gastrulation. During gastrulation, a hollow cluster of cells called a blastula reorganizes into two primary germ layers: an inner layer, called endoderm, and an outer layer, called ectoderm. Diploblastic organisms have only the two primary germ layers; these organisms characteristically have multiple symmetrical body axes (radial symmetry), as is true of jellyfish, sea anemones, and the rest of the phylum Cnidaria. All other animals are triploblastic, as endoderm and ectoderm interact to produce a third germ layer, called mesoderm. Together, the three germ layers will give rise to every organ in the body, from skin and hair to the digestive tract.

Created2013-09-17