This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 56
Filtering by

Clear all filters

173889-Thumbnail Image.png
Description

Samuel Randall Detwiler was an embryologist who studied neural development in embryos and vertebrate retinas. He discovered evidence for the relationship between somites and spinal ganglia, that transplanted limbs can be controlled by foreign ganglia, and the plasticity of ganglia in response to limb transplantations. He also extensively

Samuel Randall Detwiler was an embryologist who studied neural development in embryos and vertebrate retinas. He discovered evidence for the relationship between somites and spinal ganglia, that transplanted limbs can be controlled by foreign ganglia, and the plasticity of ganglia in response to limb transplantations. He also extensively studied vertebrate retinas during and after embryonic development. Detwiler's work established many principles studied in later limb transplantation experiments and was identified by Viktor Hamburger as an important bridge between his and Ross Granville Harrison's research.

Created2007-11-01
173890-Thumbnail Image.png
Description

Ernest Everett Just was an early twentieth century American experimental embryologist involved in research at the Marine Biological Laboratory (MBL) at Woods Hole, Massachusetts, and the Stazione Zoologica in Naples, Italy. Just was known for simple but elegant experiments that supported the "fertilizing" theory of Frank R. Lillie and served

Ernest Everett Just was an early twentieth century American experimental embryologist involved in research at the Marine Biological Laboratory (MBL) at Woods Hole, Massachusetts, and the Stazione Zoologica in Naples, Italy. Just was known for simple but elegant experiments that supported the "fertilizing" theory of Frank R. Lillie and served as an antagonist to Jacques Loeb's work with artificial parthenogenesis. Just's many experiments with marine invertebrates showed that the egg surface, or ectoplasm, plays an important role in the fertilization and development of eggs.

Created2010-06-16
173892-Thumbnail Image.png
Description

The principal work of St. Thomas Aquinas, the Summa Theologica is divided into three parts and is designed to instruct both beginners and experts in all matters of Christian Truth. It discusses topics central to Christian morality, ethics, law, and the life of Christ, providing philosophical and theological solutions to

The principal work of St. Thomas Aquinas, the Summa Theologica is divided into three parts and is designed to instruct both beginners and experts in all matters of Christian Truth. It discusses topics central to Christian morality, ethics, law, and the life of Christ, providing philosophical and theological solutions to common arguments and questions surrounding the Christian faith. The views presented in this body of writing are currently upheld in large part by the modern doctrines of the Roman Catholic Church. Interesting references to and insights on ensoulment and embryology, as well as other topics discussed in Summa Theologica, indicate a strong Aristotelian and Augustinian influence.

Created2007-11-11
173922-Thumbnail Image.png
Description

Jacques Loeb is best known for his embryological work investigating parthenogenesis in invertebrates. Artificial Parthenogenesis and Fertilization is a revised and English-translated work from his earlier book, Die chemische Entwicklungserregung des tierischen Eies (1900). Artificial Parthenogenesis describes Loeb's many and varied methodical experiments to initiate egg development without fertilization by

Jacques Loeb is best known for his embryological work investigating parthenogenesis in invertebrates. Artificial Parthenogenesis and Fertilization is a revised and English-translated work from his earlier book, Die chemische Entwicklungserregung des tierischen Eies (1900). Artificial Parthenogenesis describes Loeb's many and varied methodical experiments to initiate egg development without fertilization by sperm. As is true with much of science, some of Loeb's experiments were successful and many were not. Artificial Parthenogenesis presents a sense of what early twentieth century embryology looked like: experimenters' overarching desire for manipulation and control, coupled with their use of chemicals and macromolecules as agents of change. The book also illuminates the historical role of the sea urchin in the study of embryological development.

Created2010-06-15
173248-Thumbnail Image.png
Description

In 2011, Sonja Vernes and Simon Fisher performed a series of experiments to determine which developmental processes are controlled by the mouse protein Foxp2. Previous research showed that altering the Foxp2 protein changed how neurons grew, so Vernes and Fisher hypothesized that Foxp2 would affect gene networks that involved in

In 2011, Sonja Vernes and Simon Fisher performed a series of experiments to determine which developmental processes are controlled by the mouse protein Foxp2. Previous research showed that altering the Foxp2 protein changed how neurons grew, so Vernes and Fisher hypothesized that Foxp2 would affect gene networks that involved in the development of neurons, or nerve cells. Their results confirmed that Foxp2 affected the development of gene networks involved in the growth of neurons, as well as networks that are involved in cell specialization and cell communication. The researchers determined that Foxp2 is important for a variety of developmental processes such as motor control, language acquisition, and cognition.

Created2017-05-30
173332-Thumbnail Image.png
Description

Camillo Golgi studied the central nervous system during the late nineteenth and early twentieth centuries in Italy, and he developed a staining technique to visualize brain cells. Called the black reaction, Golgi’s staining technique enabled him to see the cellular structure of brain cells, called neurons, with much greater precision.

Camillo Golgi studied the central nervous system during the late nineteenth and early twentieth centuries in Italy, and he developed a staining technique to visualize brain cells. Called the black reaction, Golgi’s staining technique enabled him to see the cellular structure of brain cells, called neurons, with much greater precision. Golgi also used the black reaction to identify structures within animal cells like the internal reticular apparatus that stores, packs, and modifies proteins, later named the Golgi apparatus in his honor. Golgi, along with Santiago Ramón y Cajal, received the Nobel Peace Prize in 1906 for their independent work on the structure of the nervous system. Golgi’s discovery of the black reaction enabled other scientists to better study the structure of the nervous system and its development.

Created2017-02-23
173253-Thumbnail Image.png
Description

Scientists use cerebral organoids, which are artificially produced miniature organs that represent embryonic or fetal brains and have many properties similar to them, to help them study developmental disorders like microcephaly. In human embryos, cerebral tissue in the form of neuroectoderm appears within the first nine weeks of human development,

Scientists use cerebral organoids, which are artificially produced miniature organs that represent embryonic or fetal brains and have many properties similar to them, to help them study developmental disorders like microcephaly. In human embryos, cerebral tissue in the form of neuroectoderm appears within the first nine weeks of human development, and it gives rise to the brain and spinal cord. In the twenty-first century, Juergen Knoblich and Madeleine Lancaster at the Institute of Molecular Biotechnology in Vienna, Austria, grew cerebral organoids from pluripotent stem cells as a model to study developmental disorders in embryonic and fetal brains. One such disorder is microcephaly, a condition in which brain size and the number of neurons in the brain are abnormally small. Scientists use cerebral organoids, which they've grown in labs, because they provide a manipulable model for studying how neural cells migrate during development, the timing of neural development, and how genetic errors can result in developmental disorders.

Created2017-05-12
173261-Thumbnail Image.png
Description

Apoptosis, or programmed cell death, is a mechanism in embryonic development that occurs naturally in organisms. Apoptosis is a different process from cell necrosis, which is uncontrolled cell death usually after infection or specific trauma. As cells rapidly proliferate during development, some of them undergo apoptosis, which is necessary for

Apoptosis, or programmed cell death, is a mechanism in embryonic development that occurs naturally in organisms. Apoptosis is a different process from cell necrosis, which is uncontrolled cell death usually after infection or specific trauma. As cells rapidly proliferate during development, some of them undergo apoptosis, which is necessary for many stages in development, including neural development, reduction in egg cells (oocytes) at birth, as well as the shaping of fingers and vestigial organs in humans and other animals. Sydney Brenner, H. Robert Horvitz, and John E. Sulston received the Nobel Prize in Physiology or Medicine in 2002 for their work on the genetic regulation of organ development and programmed cell death. Research on cell lineages before and after embryonic development may lead to new ways to reduce or promote cell death, which can be important in preventing diseases such as Alzheimer's or cancer.

Created2017-06-08
Description

A test-tube baby is the product of a successful human reproduction that results from methods beyond sexual intercourse between a man and a woman and instead utilizes medical intervention that manipulates both the egg and sperm cells for successful fertilization. The term was originally used to refer to the babies

A test-tube baby is the product of a successful human reproduction that results from methods beyond sexual intercourse between a man and a woman and instead utilizes medical intervention that manipulates both the egg and sperm cells for successful fertilization. The term was originally used to refer to the babies born from the earliest applications of artificial insemination and has now been expanded to refer to children born through the use of in vitro fertilization, the practice of fertilizing an embryo outside of a woman's body. The use of the term in both media and scientific publications in the twentieth century has been accompanied by discussion as well as controversy regarding the ethics of reproduction technologies such as artificial insemination and in vitro fertilization. The evolution of these terms over time mirrors the perception of our ability to manipulate the human embryo, as seen by the general public as well as the scientific community.

Created2009-01-13
Description

The Golgi staining technique, also called the black reaction after the stain's color, was developed in the 1870s and 1880s in Italy to make brain cells (neurons) visible under the microscope. Camillo Golgi developed the technique while working with nervous tissue, which required Golgi to examine cell structure under the

The Golgi staining technique, also called the black reaction after the stain's color, was developed in the 1870s and 1880s in Italy to make brain cells (neurons) visible under the microscope. Camillo Golgi developed the technique while working with nervous tissue, which required Golgi to examine cell structure under the microscope. Golgi improved upon existing methods of staining, enabling scientists to view entire neurons for the first time and changing the way people discussed the development and composition of the brain's cells. Into the twenty-fist century, Golgi's staining method continued to inform research on the nervous system, particularly regarding embryonic development.

Created2017-03-06