This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 35
Filtering by

Clear all filters

173889-Thumbnail Image.png
Description

Samuel Randall Detwiler was an embryologist who studied neural development in embryos and vertebrate retinas. He discovered evidence for the relationship between somites and spinal ganglia, that transplanted limbs can be controlled by foreign ganglia, and the plasticity of ganglia in response to limb transplantations. He also extensively

Samuel Randall Detwiler was an embryologist who studied neural development in embryos and vertebrate retinas. He discovered evidence for the relationship between somites and spinal ganglia, that transplanted limbs can be controlled by foreign ganglia, and the plasticity of ganglia in response to limb transplantations. He also extensively studied vertebrate retinas during and after embryonic development. Detwiler's work established many principles studied in later limb transplantation experiments and was identified by Viktor Hamburger as an important bridge between his and Ross Granville Harrison's research.

Created2007-11-01
173400-Thumbnail Image.png
Description

First marketed in the US 1875, Lydia Pinkham’s Vegetable Compound was an herbal medicine used by women to relieve menstrual discomfort and menopausal symptoms in women. The herbal compound was invented by Lydia Estes Pinkham in 1873 in her home kitchen in Lynn, Massachusetts. Pinkham created the compound by mixing

First marketed in the US 1875, Lydia Pinkham’s Vegetable Compound was an herbal medicine used by women to relieve menstrual discomfort and menopausal symptoms in women. The herbal compound was invented by Lydia Estes Pinkham in 1873 in her home kitchen in Lynn, Massachusetts. Pinkham created the compound by mixing alcohol with roots and herbs. The compound was patented, packaged, and distributed by the Mrs. Lydia Pinkham Medicine Company in 1876. The Mrs. Lydia Pinkham Medicine Company advertised the compound in many US newspapers and magazines, causing Lydia Pinkham’s Vegetable Compound to become a household name and making treatments for female reproductive discomfort mainstream in the US.

Created2017-05-20
173405-Thumbnail Image.png
Description

Katharina Dorothea Dalton was a physician in England in the twentieth century who defined premenstrual syndrome (PMS) as a cluster of symptoms suspected to begin one to two weeks before menstruation and disappear upon the onset of a new menstrual cycle. Prior to Dalton, there was little research on pre-menstrual

Katharina Dorothea Dalton was a physician in England in the twentieth century who defined premenstrual syndrome (PMS) as a cluster of symptoms suspected to begin one to two weeks before menstruation and disappear upon the onset of a new menstrual cycle. Prior to Dalton, there was little research on pre-menstrual issues and those that existed linked the problem to excessive water retention or estrogen. Dalton hypothesized that PMS resulted from a deficiency in the hormone progesterone and advocated for hormone replacement therapy to lessen the symptoms of the syndrome. Dalton established an early PMS clinic in London, England, and she testified on behalf of women in over fifty court cases claiming to have committed crimes while suffering from PMS.

Created2017-05-24
173248-Thumbnail Image.png
Description

In 2011, Sonja Vernes and Simon Fisher performed a series of experiments to determine which developmental processes are controlled by the mouse protein Foxp2. Previous research showed that altering the Foxp2 protein changed how neurons grew, so Vernes and Fisher hypothesized that Foxp2 would affect gene networks that involved in

In 2011, Sonja Vernes and Simon Fisher performed a series of experiments to determine which developmental processes are controlled by the mouse protein Foxp2. Previous research showed that altering the Foxp2 protein changed how neurons grew, so Vernes and Fisher hypothesized that Foxp2 would affect gene networks that involved in the development of neurons, or nerve cells. Their results confirmed that Foxp2 affected the development of gene networks involved in the growth of neurons, as well as networks that are involved in cell specialization and cell communication. The researchers determined that Foxp2 is important for a variety of developmental processes such as motor control, language acquisition, and cognition.

Created2017-05-30
173298-Thumbnail Image.png
Description

NovaSure is a device for endometrial ablation, which is a procedure that removes the endometrium, that the US Food and Drug Administration, or FDA, approved for use on 28 September 2001. Endometrium is the tissue that lines the uterus. NovaSure destroys the endometrium by sending electric beams at the endometrium.

NovaSure is a device for endometrial ablation, which is a procedure that removes the endometrium, that the US Food and Drug Administration, or FDA, approved for use on 28 September 2001. Endometrium is the tissue that lines the uterus. NovaSure destroys the endometrium by sending electric beams at the endometrium. Hologic, a medical technology company concerned with women’s health, developed NovaSure to treat menorrhagia, or heavy bleeding during menstruation. Menorrhagia is a common symptom of endometriosis. Endometriosis is the growth of the endometrium outside of the uterus. While NovaSure is not a treatment that doctors use to directly treat endometriosis, the procedure may help alleviate heavy bleeding during menstruation, which may improve a patient’s quality of life as heavy menstrual bleeding is often associated with high levels of anxiety and low levels of confidence.

Created2019-09-20
173332-Thumbnail Image.png
Description

Camillo Golgi studied the central nervous system during the late nineteenth and early twentieth centuries in Italy, and he developed a staining technique to visualize brain cells. Called the black reaction, Golgi’s staining technique enabled him to see the cellular structure of brain cells, called neurons, with much greater precision.

Camillo Golgi studied the central nervous system during the late nineteenth and early twentieth centuries in Italy, and he developed a staining technique to visualize brain cells. Called the black reaction, Golgi’s staining technique enabled him to see the cellular structure of brain cells, called neurons, with much greater precision. Golgi also used the black reaction to identify structures within animal cells like the internal reticular apparatus that stores, packs, and modifies proteins, later named the Golgi apparatus in his honor. Golgi, along with Santiago Ramón y Cajal, received the Nobel Peace Prize in 1906 for their independent work on the structure of the nervous system. Golgi’s discovery of the black reaction enabled other scientists to better study the structure of the nervous system and its development.

Created2017-02-23
173336-Thumbnail Image.png
Description

In the early twentieth century US, Jean Paul Pratt and Edgar Allen conducted clinical experiments on women who had abnormal menstrual cycles. During the clinical tests, researchers injected the hormone estrogen into their patients to alleviate their menstrual ailments, which ranged from irregular cycles to natural menopause. The hormone estrogen

In the early twentieth century US, Jean Paul Pratt and Edgar Allen conducted clinical experiments on women who had abnormal menstrual cycles. During the clinical tests, researchers injected the hormone estrogen into their patients to alleviate their menstrual ailments, which ranged from irregular cycles to natural menopause. The hormone estrogen plays a prominent role in the menstrual cycle by signaling the tissue lining the uterus (endometrium) to thicken in preparation for possible pregnancy. In their clinical tests, Pratt and Allen showed that injecting estrogen into female human subjects restored their normal menstrual cycle, removed symptoms such as hot flashes, and caused uterine tissue to grow. The clinical tests conducted by Pratt and Allen provided experimental evidence and justification for the injection of isolated estrogen in women to alleviate, for a short amount of time, different menstrual problems, and it contributed to later hormone therapy research.

Created2017-04-06
173250-Thumbnail Image.png
Description

Lydia Estes Pinkham invented and sold Lydia Pinkham’s Vegetable Compound, a medicinal tonic used to treat menstrual discomfort and promote female reproductive health in general, in the US during the nineteenth century. Pinkham also founded Mrs. Lydia E. Pinkham Medicine Company, a business that sold natural remedies for women’s health

Lydia Estes Pinkham invented and sold Lydia Pinkham’s Vegetable Compound, a medicinal tonic used to treat menstrual discomfort and promote female reproductive health in general, in the US during the nineteenth century. Pinkham also founded Mrs. Lydia E. Pinkham Medicine Company, a business that sold natural remedies for women’s health issues. Throughout her life, Pinkham acted as an authority on female wellness, writing medical pamphlets about female anatomy and reproductive processes. In those pamphlets, Pinkham addressed female medical issues that physicians did not frequently discuss with their patients. Pinkham’s advertising techniques and her products helped women learn about their reproductive anatomy and processes and helped ease menstruation.

Created2017-05-20
173253-Thumbnail Image.png
Description

Scientists use cerebral organoids, which are artificially produced miniature organs that represent embryonic or fetal brains and have many properties similar to them, to help them study developmental disorders like microcephaly. In human embryos, cerebral tissue in the form of neuroectoderm appears within the first nine weeks of human development,

Scientists use cerebral organoids, which are artificially produced miniature organs that represent embryonic or fetal brains and have many properties similar to them, to help them study developmental disorders like microcephaly. In human embryos, cerebral tissue in the form of neuroectoderm appears within the first nine weeks of human development, and it gives rise to the brain and spinal cord. In the twenty-first century, Juergen Knoblich and Madeleine Lancaster at the Institute of Molecular Biotechnology in Vienna, Austria, grew cerebral organoids from pluripotent stem cells as a model to study developmental disorders in embryonic and fetal brains. One such disorder is microcephaly, a condition in which brain size and the number of neurons in the brain are abnormally small. Scientists use cerebral organoids, which they've grown in labs, because they provide a manipulable model for studying how neural cells migrate during development, the timing of neural development, and how genetic errors can result in developmental disorders.

Created2017-05-12
173261-Thumbnail Image.png
Description

Apoptosis, or programmed cell death, is a mechanism in embryonic development that occurs naturally in organisms. Apoptosis is a different process from cell necrosis, which is uncontrolled cell death usually after infection or specific trauma. As cells rapidly proliferate during development, some of them undergo apoptosis, which is necessary for

Apoptosis, or programmed cell death, is a mechanism in embryonic development that occurs naturally in organisms. Apoptosis is a different process from cell necrosis, which is uncontrolled cell death usually after infection or specific trauma. As cells rapidly proliferate during development, some of them undergo apoptosis, which is necessary for many stages in development, including neural development, reduction in egg cells (oocytes) at birth, as well as the shaping of fingers and vestigial organs in humans and other animals. Sydney Brenner, H. Robert Horvitz, and John E. Sulston received the Nobel Prize in Physiology or Medicine in 2002 for their work on the genetic regulation of organ development and programmed cell death. Research on cell lineages before and after embryonic development may lead to new ways to reduce or promote cell death, which can be important in preventing diseases such as Alzheimer's or cancer.

Created2017-06-08