This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 172
Filtering by

Clear all filters

173925-Thumbnail Image.png
Description

Wilhelm Roux was a nineteenth-century experimental embryologist who was best known for pioneering Entwicklungsmechanik, or developmental mechanics. Roux was born in Jena, Germany, on 9 June 1850, the only son of Clotilde Baumbach and a university fencing master, F. A. Wilhelm Ludwig Roux. Roux described himself as an aloof child,

Wilhelm Roux was a nineteenth-century experimental embryologist who was best known for pioneering Entwicklungsmechanik, or developmental mechanics. Roux was born in Jena, Germany, on 9 June 1850, the only son of Clotilde Baumbach and a university fencing master, F. A. Wilhelm Ludwig Roux. Roux described himself as an aloof child, but when he was fourteen he cultivated a passion for science that was encouraged by the director at Oberrealschule in Meiningen. Roux attended the University of Jena in 1869, but his education was halted after the first year because of his service in the military during the Franco-Prussian War. When he returned from the war, he continued to take classes and was admitted into the University of Jena medical faculty. He passed his medical examination in 1877 and became a licensed doctor.

Created2009-07-22
173926-Thumbnail Image.png
Description

Carl Gottfried Hartman researched the reproductive physiology of opossums and rhesus monkeys. He was the first to extensively study the embryology and physiology of reproduction in opossums when little was known about this mammal. Hartman worked in Texas where opossums, the only marsupial that lives in North America, were abundant.

Carl Gottfried Hartman researched the reproductive physiology of opossums and rhesus monkeys. He was the first to extensively study the embryology and physiology of reproduction in opossums when little was known about this mammal. Hartman worked in Texas where opossums, the only marsupial that lives in North America, were abundant. The female opossum delivers her fetal opossums in her pouch, where one can easily observe their development. After studying opossums for thirteen years, Hartman investigated the reproductive physiology of rhesus monkeys, also known as macaques. This research led to the discovery of when ovulation occurs, as well as its relation to the human menstrual cycle. Later research on scientific methods of birth control relied heavily on Hartman 's discoveries about primate and human reproduction.

Created2011-11-01
173932-Thumbnail Image.png
Description

The sex of a reptile embryo partly results from the production of sex hormones during development, and one process to produce those hormones depends on the temperature of the embryo's environment. The production of sex hormones can result solely from genetics or from genetics in combination with the influence of

The sex of a reptile embryo partly results from the production of sex hormones during development, and one process to produce those hormones depends on the temperature of the embryo's environment. The production of sex hormones can result solely from genetics or from genetics in combination with the influence of environmental factors. In genotypic sex determination, also called genetic or chromosomal sex determination, an organism's genes determine which hormones are produced. Non-genetic sex determination occurs when the sex of an organism can be altered during a sensitive period of development due to external factors such as temperature, humidity, or social interactions. Temperature-dependent sex determination (TSD), where the temperature of the embryo's environment influences its sex development, is a widespread non-genetic process of sex determination among vertebrates, including reptiles. All crocodilians, most turtles, many fish, and some lizards exhibit TSD.

Created2013-02-01
173934-Thumbnail Image.png
Description

The General Embryological Information Service (GEIS) was an annual report published by the Hubrecht Laboratory in Utrecht, The Netherlands from 1949 to 1981 that disseminated contemporary research information to developmental biologists. The purpose of the annual report was to catalog the names, addresses, and associated research of every developmental biologist

The General Embryological Information Service (GEIS) was an annual report published by the Hubrecht Laboratory in Utrecht, The Netherlands from 1949 to 1981 that disseminated contemporary research information to developmental biologists. The purpose of the annual report was to catalog the names, addresses, and associated research of every developmental biologist in the world. Pieter Nieuwkoop edited each issue from 1949 until 1964, when Job Faber began assisting Nieuwkoop. Bert Z. Salome joined the editing team in 1968 before Nieuwkoop ceased editing duties in 1971. Faber and Salome remained the editors from 1971 until the periodical's final year of circulation in 1981. The Hubrecht Laboratory, a national laboratory created to house a large collection of comparative embryological materials and loan them to interested researchers, sponsored the publication after World War II to facilitate international collaboration and prevent unnecessary duplication of work. The catalog of researchers and the scientific topics grew in number and variety as the field of developmental biology changed during the publication's thirty-two year history.

Created2013-01-03
173939-Thumbnail Image.png
Description

Although best known for his work with the fruit fly, for which he earned a Nobel Prize and the title "The Father of Genetics," Thomas Hunt Morgan's contributions to biology reach far beyond genetics. His research explored questions in embryology, regeneration, evolution, and heredity, using a variety of approaches.

Created2007-09-25
173940-Thumbnail Image.png
Description

The Cell-Theory was written by Thomas Henry Huxley in Britain and published in 1853 by The British and Foreign Medico-Chirurgical Review. The twenty-two page article reviews twelve works on cell theory, including those in Germany by Caspar Friedrich Wolff in the eighteenth century and by Karl Ernst von Baer in

The Cell-Theory was written by Thomas Henry Huxley in Britain and published in 1853 by The British and Foreign Medico-Chirurgical Review. The twenty-two page article reviews twelve works on cell theory, including those in Germany by Caspar Friedrich Wolff in the eighteenth century and by Karl Ernst von Baer in the nineteenth century. Huxley spends much of The Cell-Theory on a cell theory proposed in the late 1830s by Matthias Schleiden and Theodor Schwann in Germany. Schleiden and Schwann maintained that the cell was the most fundamental unit of life and that the nucleus was the most significant cellular component. Huxley, instead, promoted an epigenetic theory of the cell, for which properties of life emerge from the outer cytoplasm, cell membrane, and wall (the periplast), as opposed to the inner contents of the cell, including the nucleus (the endoplast). Huxley's arguments in The Cell-Theory influenced future scientists about the role of epigenetic processes in embryology and development.

Created2013-12-12
173880-Thumbnail Image.png
Description

Frederik Ruysch, working in the Netherlands, introduced the term epithelia in the third volume of his Thesaurus Anatomicus in 1703. Ruysch created the term from the Greek epi, which means on top of, and thele, which means nipple, to describe the type of tissue he found when dissecting the li

Frederik Ruysch, working in the Netherlands, introduced the term epithelia in the third volume of his Thesaurus Anatomicus in 1703. Ruysch created the term from the Greek epi, which means on top of, and thele, which means nipple, to describe the type of tissue he found when dissecting the lip of a cadaver. In the mid nineteenth century, anatomist Albrecht von Haller adopted the word epithelium, designating Ruysch's original terminology as the plural version. In modern science, epithelium is a type of animal tissue in which cells are packed into neatly arranged sheets. The epithelial cells lie proximate to each other and attach to a thin, fibrous sheet called a basement membrane. Epithelia line the surfaces of cavities and structures throughout the body, and also form glands. Although they lack blood vessels, epithelia contain nerves and can function to receive sensation, absorb, protect, and secrete, depending on which part of the body the epithelia line. During development, epithelia act in conjunction with another tissue type, mesenchyme, to form nearly every organ in the body, from hair and teeth to the digestive tract. Epithelia are an essential part of embryonic development and the maintenance and function of the body throughout life.

Created2012-10-17
173887-Thumbnail Image.png
Description

Frank R. Lillie was born in Toronto, Canada, on 27 June 1870. His mother was Emily Ann Rattray and his father was George Waddell Little, an accountant and co-owner of a wholesale drug company. While in high school Lillie took up interests in entomology and paleontology but went

Frank R. Lillie was born in Toronto, Canada, on 27 June 1870. His mother was Emily Ann Rattray and his father was George Waddell Little, an accountant and co-owner of a wholesale drug company. While in high school Lillie took up interests in entomology and paleontology but went to the University of Toronto with the aim of studying ministry. He slowly became disillusioned with this career choice and decided to major in the natural sciences. It was during his senior year that he developed his lifelong interest in embryology. Graduating with a BA in 1891 Lillie then moved to the Marine Biological Laboratory (MBL) at Woods Hole, Massachusetts, to work and study with Charles Otis Whitman, the founding director of the MBL. Lillie collected and studied cell lineage side-by-side with some of the most prominent embryologists of the time: Edmund B. Wilson, Edwin G. Conklin, and Aaron L. Treadwell. Along with his cell lineage studies, Whitman guided Lillie to work on the question of how blastomeres contributed to the formation of organs in fresh water clams.

Created2009-07-22
173889-Thumbnail Image.png
Description

Samuel Randall Detwiler was an embryologist who studied neural development in embryos and vertebrate retinas. He discovered evidence for the relationship between somites and spinal ganglia, that transplanted limbs can be controlled by foreign ganglia, and the plasticity of ganglia in response to limb transplantations. He also extensively

Samuel Randall Detwiler was an embryologist who studied neural development in embryos and vertebrate retinas. He discovered evidence for the relationship between somites and spinal ganglia, that transplanted limbs can be controlled by foreign ganglia, and the plasticity of ganglia in response to limb transplantations. He also extensively studied vertebrate retinas during and after embryonic development. Detwiler's work established many principles studied in later limb transplantation experiments and was identified by Viktor Hamburger as an important bridge between his and Ross Granville Harrison's research.

Created2007-11-01
173890-Thumbnail Image.png
Description

Ernest Everett Just was an early twentieth century American experimental embryologist involved in research at the Marine Biological Laboratory (MBL) at Woods Hole, Massachusetts, and the Stazione Zoologica in Naples, Italy. Just was known for simple but elegant experiments that supported the "fertilizing" theory of Frank R. Lillie and served

Ernest Everett Just was an early twentieth century American experimental embryologist involved in research at the Marine Biological Laboratory (MBL) at Woods Hole, Massachusetts, and the Stazione Zoologica in Naples, Italy. Just was known for simple but elegant experiments that supported the "fertilizing" theory of Frank R. Lillie and served as an antagonist to Jacques Loeb's work with artificial parthenogenesis. Just's many experiments with marine invertebrates showed that the egg surface, or ectoplasm, plays an important role in the fertilization and development of eggs.

Created2010-06-16