This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 29
Filtering by

Clear all filters

173931-Thumbnail Image.png
Description

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of cells transforms into a two-layered embryo made of an inner layer of endoderm and an outer layer of ectoderm. In more complex organisms, like vertebrates, these two primary germ layers interact to give rise to a third germ layer, called mesoderm. Regardless of the presence of two or three layers, endoderm is always the inner-most layer. Endoderm forms the epithelium-- a type of tissue in which the cells are tightly linked together to form sheets-- that lines the primitive gut. From this epithelial lining of the primitive gut, organs like the digestive tract, liver, pancreas, and lungs develop.

Created2013-11-17
173894-Thumbnail Image.png
Description

In nineteenth century Great Britain, Thomas Henry Huxley proposed connections between the development of organisms and their evolutionary histories, critiqued previously held concepts of homology, and promoted Charles Darwin's theory of evolution. Many called him Darwin's Bulldog. Huxley helped professionalize and redefine British science. He wrote about philosophy, religion, and

In nineteenth century Great Britain, Thomas Henry Huxley proposed connections between the development of organisms and their evolutionary histories, critiqued previously held concepts of homology, and promoted Charles Darwin's theory of evolution. Many called him Darwin's Bulldog. Huxley helped professionalize and redefine British science. He wrote about philosophy, religion, and social issues, and researched and theorized in many biological fields. Huxley made several methodological contributions to both invertebrate and vertebrate embryology and development, and he helped shape the extra-scientific discourse for these fields.

Created2013-11-26
173226-Thumbnail Image.png
Description

In 1893, Julia Barlow Platt published her research on the origins of cartilage in the developing head of the common mudpuppy (Necturus maculosus) embryo. The mudpuppy is an aquatic salamander commonly used by embryologists because its large embryonic cells and nuclei are easy to see. Platt followed the paths of

In 1893, Julia Barlow Platt published her research on the origins of cartilage in the developing head of the common mudpuppy (Necturus maculosus) embryo. The mudpuppy is an aquatic salamander commonly used by embryologists because its large embryonic cells and nuclei are easy to see. Platt followed the paths of cells in developing mudpuppy embryos to see how embryonic cells migrated during the formation of the head. With her research, Platt challenged then current theories about germ layers, the types of cells in an early embryo that develop into adult cells. In most organisms' development, three types of germ layers are responsible for the formation of tissues and organs. The outermost layer is called ectoderm, the middle layer mesoderm, and the innermost layer endoderm, although Platt called it entoderm. Platt's research provided a basis for scientists to clarify the destination or function of the germ layers in vertebrates' development.

Created2017-03-06
173233-Thumbnail Image.png
Description

Karl Oskar Illmensee studied the cloning and reproduction of fruit flies, mice, and humans in the US and Europe during the twentieth and twenty-first centuries. Illmensee used nuclear transfer techniques (cloning) to create early mouse embryos from adult mouse cells, a technique biologists used in later decades to help explain

Karl Oskar Illmensee studied the cloning and reproduction of fruit flies, mice, and humans in the US and Europe during the twentieth and twenty-first centuries. Illmensee used nuclear transfer techniques (cloning) to create early mouse embryos from adult mouse cells, a technique biologists used in later decades to help explain how embryonic cells function during development. In the early 1980s, Illmensee faced accusations of fraud when others were unable to replicate the results of his experiments with cloned mouse embryos. Illmensee also worked with human embryos, investigating how embryos split to form identical twins.

Created2017-02-26
173307-Thumbnail Image.png
Description

De ovi mammalium et hominis genesi (On the Genesis of the Ovum of Mammals and of Men) is an 1827 pamphlet by Karl Ernst von Baer about the anatomical observation and description of the egg (ovum) of mammals, like dogs and humans. The pamphlet detailed evidence for the existence of

De ovi mammalium et hominis genesi (On the Genesis of the Ovum of Mammals and of Men) is an 1827 pamphlet by Karl Ernst von Baer about the anatomical observation and description of the egg (ovum) of mammals, like dogs and humans. The pamphlet detailed evidence for the existence of the ovum at the beginning of the developmental process in mammals. Prior to von Baer's publication, there was much debate about how organisms develop, as some claimed that organisms grow from a corpuscular element already preformed in the body (preformationism), and others said that organisms developed from a fluid material undergoing a process of progressive formation (epigenesis). Researchers at the time struggled to observe the early stages of development, and those such as von Baer had to observe the phenomenon through microscopes and then provide interpretations of the phenomena they observed.

Created2017-02-09
Description

In the second half of the
twentieth century, scientists learned how to clone organisms in some
species of mammals. Scientists have applied somatic cell nuclear transfer to clone human and
mammalian embryos as a means to produce stem cells for laboratory
and medical use. Somatic cell

In the second half of the
twentieth century, scientists learned how to clone organisms in some
species of mammals. Scientists have applied somatic cell nuclear transfer to clone human and
mammalian embryos as a means to produce stem cells for laboratory
and medical use. Somatic cell nuclear transfer (SCNT) is a technology applied in cloning, stem cell
research and regenerative medicine. Somatic cells are cells that
have gone through the differentiation process and are not germ
cells. Somatic cells donate their nuclei, which scientists
transplant into eggs after removing their nucleuses (enucleated eggs).
Therefore, in SCNT, scientists replace the nucleus in an egg cell
with the nucleus from a somatic cell.

Created2014-11-04
173088-Thumbnail Image.png
Description

A germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues. All animals, except perhaps sponges, form two or three germ layers. The germ layers develop early in embryonic life, through

A germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues. All animals, except perhaps sponges, form two or three germ layers. The germ layers develop early in embryonic life, through the process of gastrulation. During gastrulation, a hollow cluster of cells called a blastula reorganizes into two primary germ layers: an inner layer, called endoderm, and an outer layer, called ectoderm. Diploblastic organisms have only the two primary germ layers; these organisms characteristically have multiple symmetrical body axes (radial symmetry), as is true of jellyfish, sea anemones, and the rest of the phylum Cnidaria. All other animals are triploblastic, as endoderm and ectoderm interact to produce a third germ layer, called mesoderm. Together, the three germ layers will give rise to every organ in the body, from skin and hair to the digestive tract.

Created2013-09-17
173433-Thumbnail Image.png
Description

The Boys from Brazil is a science fiction film based on the novel of the same name by Ira Levin about an underground neo-Nazi society in South America trying to clone Adolf Hitler, the dictator of Nazi Germany during World War II, to restore the Nazi movement. The film was

The Boys from Brazil is a science fiction film based on the novel of the same name by Ira Levin about an underground neo-Nazi society in South America trying to clone Adolf Hitler, the dictator of Nazi Germany during World War II, to restore the Nazi movement. The film was directed by Franklin Schaffner and released in 1978 by 20th Century Fox in Los Angeles, California. The Boys from Brazil is a film that was one of the first films to depict cloning, and to discuss the ethical implications of genetic engineering, cloning, and eugenics.

Created2017-06-09
Description

Advanced Cell Technology (ACT), a stem cell biotechnology company in Worcester, Massachusetts, showed the potential for cloning to contribute to conservation efforts. In 2000 ACT researchers in the United States cloned a gaur (Bos gaurus), an Asian ox with a then declining wild population. The researchers used cryopreserved gaur skin

Advanced Cell Technology (ACT), a stem cell biotechnology company in Worcester, Massachusetts, showed the potential for cloning to contribute to conservation efforts. In 2000 ACT researchers in the United States cloned a gaur (Bos gaurus), an Asian ox with a then declining wild population. The researchers used cryopreserved gaur skin cells combined with an embryo of a domestic cow (Bos taurus). A domestic cow also served as the surrogate for the developing gaur clone. The successful procedure opened the opportunity to clone individuals from species for which there are few or zero live specimens. The official release of this experiment's data was published in the paper 'Cloning of an Endangered Species (Bos gaurus) Using Interspecies Nuclear Transfer,' in October 2000. In the article, the researchers presented data collected from several cloned fetuses that were aborted before the full term of 283 days. At the time of publication, the gaur bull fetus, named Noah at birth, had developed for greater than 180 days. Noah was born on 8 January 2001, but died two days later due to dysentery. The development, birth, and death of Noah became a platform for conservationists and ethicists to critique the role of cloning in society and as a method to conserve species.

Created2013-07-26
173051-Thumbnail Image.png
Description

In humans, sex determination is the process that determines the biological sex of an offspring and, as a result, the sexual characteristics that they will develop. Humans typically develop as either male or female, primarily depending on the combination of sex chromosomes that they inherit from their parents. The human

In humans, sex determination is the process that determines the biological sex of an offspring and, as a result, the sexual characteristics that they will develop. Humans typically develop as either male or female, primarily depending on the combination of sex chromosomes that they inherit from their parents. The human sex chromosomes, called X and Y, are structures in human cells made up of tightly bound deoxyribonucleic acid, or DNA, and proteins. Those are molecules that contain the instructions for the development and functioning of all life forms, including the development of physical traits and body parts that correspond with each biological sex. Humans who inherit two X chromosomes typically develop as females, while humans with one X and one Y chromosome typically develop as males. Sex determination is the beginning of the development of many characteristics that influence how a human looks and functions as well as the societal expectations that other humans have for each other.

Created2021-07-16